使用Vessel-X设备进行经皮血管成形术治疗有症状的胸腰椎骨折的安全性和有效性

详细

目的。评估有关Vessel-X设备(中国山东冠龙医疗用品有限公司)安全性和有效性的临床和放射学研究结果,该设备用于治疗有和没有椎体后壁和/或两个终板损伤的症状性脊椎骨折。

材料与方法。对2020年3月19日至9月期间因症状性椎体骨折而接受92次手术干预的共66名患者进行了回顾性检查。所有骨折均分为2个亚组:“复杂”(36处骨折,后壁和/或椎骨的两个终板受损)和“简单”(所有其他)。

在手术前一天和随访1、6和12个月后,使用数字评分量表(NRS)和Oswestry功能障碍指数(ODI)评估治疗结果。椎体高度恢复(VHR)也是通过比较干预前后的X光片来评估的。

结果。共有92块椎骨(58块腰椎和34块胸椎)使用24次多级手术进行了治疗。技术成功率为100%,仅发现无症状椎旁骨水泥渗漏1例。在两个亚组中,术前和随访1、6和12月后NRS和ODI之间存在可靠的统计差异(p <0.05),在比较手术前后的数据时,椎体高度也是如此(p <0.05)。复杂骨折与单纯骨折的椎体高度恢复差异无统计学意义。

结论。血管成形术是治疗简单和复杂疼痛性椎体骨折的一种安全有效的治疗方法,可以明显减轻症状,确保良好的骨水泥渗漏的控制,并适当恢复椎体高度。

作者简介

Salvatore Masala

University of Foggia

Email: salva.masala@tiscali.it
ORCID iD: 0000-0003-0032-7970

MD

意大利, Foggia

Adriano Lacchè

University of Foggia

Email: adrianolacche@gmail.com
ORCID iD: 0000-0003-1782-8624

MD

意大利, Foggia

Chiara Zini

University of Foggia

Email: zini.chiara@gmail.com
ORCID iD: 0000-0003-3456-4106

MD

意大利, Foggia

Domenico Mannatrizio

University of Foggia

Email: dr.mannatrizio@gmail.com
ORCID iD: 0000-0003-3365-7132

MD

意大利, Foggia

Stefano Marcia

University of Foggia

Email: stemarcia@gmail.com
ORCID iD: 0000-0002-2118-9864

MD

意大利, Foggia

Matteo Bellini

University of Foggia

Email: matteo.bellini@icloud.com
ORCID iD: 0000-0002-1704-6246

MD

意大利, Foggia

Giuseppe Guglielmi

University of Foggia

编辑信件的主要联系方式.
Email: giuseppe.guglielmi@unifg.it
ORCID iD: 0000-0002-4325-8330

MD, Professor

意大利, Foggia

参考

  1. Kushchayev SV, Wiener PC, Teytelboym OM, et al. Percutaneous vertebroplasty: a history of procedure, technology, culture, specialty, and economics. Neuroimaging Clin N Am. 2019;29(4):481–494. doi: 10.1016/j.nic.2019.07.011
  2. Bornemann R, Koch EM, Wollny M, Pflugmacher R. Treatment options for vertebral fractures an overview of different philosophies and techniques for vertebral augmentation. Eur J Orthop Surg Traumatol. 2014;24(Suppl 1):S131–143. doi: 10.1007/s00590-013-1257-3
  3. Flors L, Lonjedo E, Leiva-Salinas C, et al. Vesselplasty: a new technical approach to treat symptomatic vertebral compression fractures. AJR Am J Roentgenol. 2009;193(1):218–226. doi: 10.2214/AJR.08.1503
  4. Tsoumakidou G, Too CW, Koch G, et al. CIRSE guidelines on percutaneous vertebral augmentation. Cardiovasc Intervent Radiol. 2017;40(3):331–342. doi: 10.1007/s00270-017-1574-8
  5. Filippiadis DK, Marcia S, Masala S, et al. Percutaneous vertebroplasty and kyphoplasty: current status, new developments and old controversies. Cardiovasc Intervent Radiol. 2017;40(12):1815–1823. doi: 10.1007/s00270-017-1779-x
  6. Diel P, Röder C, Perler G, et al. Radiographic and safety details of vertebral body stenting: results from a multicenter chart review. BMC Musculoskelet Disord. 2013;14:233. doi: 10.1186/1471-2474-14-233
  7. Vanni D, Galzio R, Kazakova A, et al. Third-generation percutaneous vertebral augmentation systems. J Spine Surg. 2016;2(1):13–20. doi: 10.21037/jss.2016.02.01
  8. Anselmetti GC, Manca A, Marcia S, et al. Vertebral augmentation with nitinol endoprosthesis: clinical experience in 40 patients with 1-year follow-up. Cardiovasc Intervent Radiol. 2014;37(1):193–202. doi: 10.1007/s00270-013-0623-1
  9. Zhan Y, Jiang J, Liao H, et al. Risk factors for cement leakage after vertebroplasty or kyphoplasty: a meta-analysis of published evidence. World Neurosurg. 2017;101:633–642. doi: 10.1016/j.wneu.2017.01.124
  10. Tempesta V, Cannata G, Ferraro G, et al. The new Vessel-X kyphoplasty for vertebral compression fractures: 2-year follow-up of 136 levels. Las Vegas: American Academy of Orthopaedic Surgeons Annual Meeting; 2009.
  11. McCall T, Cole C, Dailey A. Vertebroplasty and kyphoplasty: a comparative review of efficacy and adverse events. Curr Rev Musculoskelet Med. 2008;1:17–23. doi: 10.1007/s12178-007-9013-0
  12. Mroz TE, Yamashita T, Davros WJ, Lieberman IH. Radiation exposure to the surgeon and the patient during kyphoplasty. J Spinal Disord Tech. 2008;21(2):96–100. doi: 10.1097/BSD.0b013e31805fe9e1
  13. Ruiz Santiago F, Santiago Chinchilla A, Guzmán Álvarez L, et al. Comparative review of vertebroplasty and kyphoplasty. World J Radiol. 2014;6(6):329–343. doi: 10.4329/wjr.v6.i6.329
  14. Hiwatashi A, Yoshiura T, Yamashita K, et al. Morphologic change in vertebral body after percutaneous vertebroplasty: follow-up with MDCT. AJR Am J Roentgenol. 2010;195:W207–W212. doi: 10.2214/AJR.10.4195
  15. Grohs JG, Matzner M, Trieb K, Krepler P. Minimal invasive stabilization of osteoporotic vertebral fractures: a prospective nonrandomized comparison of vertebroplasty and balloon kyphoplasty. J Spinal Disord Tech. 2005;18(3):238–242.
  16. Lin EP, Ekholm S, Hiwatashi A, Westesson PL. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol. 2004;25(2):175–180.
  17. Bambang D. Vesselplasty: a novel concept of percutaneous treatment for stabilization and height restoration of vertebral compression fractures. J Musculoskeletal Res. 2008;11(2):71–79. doi: 10.1142/s0218957708001985
  18. Zheng Z, Luk KD, Kuang G, et al. Vertebral augmentation with a novel Vessel-X bone void filling container system and bioactive bone cement. Spine (Phila Pa 1976). 2007;32(19):2076–2082. doi: 10.1097/BRS.0b013e3181453f64
  19. Carlier RY, Gordji H, Mompoint DM, et al. Osteoporotic vertebral collapse: percutaneous vertebroplasty and local kyphosis correction. Radiology. 2004;233(3):891–898. doi: 10.1148/radiol.2333030400
  20. Chen WJ, Kao YH, Yang SC, et al. Impact of cement leakage into disks on the development of adjacent vertebral compression fractures. J Spinal Disord Tech. 2010;23(1):35–39. doi: 10.1097/BSD.0b013e3181981843
  21. Komemushi A, Tanigawa N, Kariya S, et al. Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture. Cardiovasc Intervent Radiol. 2006;29(4):580–585. doi: 10.1007/s00270-005-0138-5
  22. Guarnieri G, Masala S, Muto M. Update of vertebral cementoplasty in porotic patients. Interv Neuroradiol. 2015;21(3):372–380. doi: 10.1177/1591019915582364

补充文件

附件文件
动作
1. JATS XML
2. 图1.Vessel-X装置,由网状不可拉伸材料(聚对苯二甲酸乙二醇酯)制成,孔隙率100µm。

下载 (96KB)
3. Fig. 2. (a–d): Intraoperatory positioning of Vessel-X device. BMF starts to spread out of the PET container only after it reached its maximum size. (e): VR reconstruction of Vessel-X.

下载 (281KB)
4. 图3.理想的Vessel-X装置放置,无成骨材料渗漏: a——计算机断层扫描上复杂椎体骨折的矢状重建; b——术后计算机断层扫描控制。

下载 (117KB)
5. 图4.指数以百分比表示,从0%到100%不等,其中下限表示没有功能障碍,上限表示功能障碍程度最高(患者卧床不起)。治疗前,平均ODI为78%(第25个百分位数为70.5%,第75个百分位数为84%)。未发现异常值。治疗1个月后,平均ODI为14%(第25个百分位数为12.7%,第75个百分位数为17%)。未发现异常值。治疗6个月后,平均ODI为13%(第25个百分位为12%,第75个百分位为16%)。未发现异常值。治疗12个月后,平均ODI为13%( 第25个百分位数为12.4%,第75个百分位数为16%)。未发现异常值。平均ODI评分在术后1个月从73.2±7.9降至14.1±3.3,在术后6个月降至13.8±3.6(p<0.001)。

下载 (100KB)
6. 图5.治疗前,NRS评分主要集中在量表的上端:中位数8、第25个百分位数7、第75个百分位数8。根据调查结果,治疗后NRS评分分布:1个月后:中位数2,第25个百分位数2,第75个百分位数3; 6个月后:中位数2,第25个百分位数2,第75个百分位数3; 12个月后:中位数为2, 第25个百分位2,第75个百分位3。未发现异常值。治疗前,平均NRS为7.3±1.2,1个月后降至1.8±1.3,6个月后降至2.1±0.8,12个月后降至1.7±1.0(p<0.001)。

下载 (101KB)

版权所有 © Masala S., Lacchè A., Zini C., Mannatrizio D., Marcia S., Bellini M., Guglielmi G., 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##