多普勒观测闪烁神器:射频超声信号数据库

封面图片

如何引用文章

详细

论证。通过仪器筛网上涂漆像素的快速混乱变化,表现出多普勒模式中的闪烁伪影。 不能足够地研究可用作有用的诊断特征的现象。 关于工件的原因的大多数假设是基于来自超声波装置屏幕的图像而没有深入研究接收信号的性质的深度研究。

材料与方法射频超声信号记录在幽灵的研究中。 这些物体导致器件屏幕上的闪烁伪像以及血管和软组织的模仿。 从2016年7月到3月2021年进行数据收集使用Sonad-500研究超声仪器获得数据,具有7,5 L38和3,4 C60传感器。

内容数据库 提供了一个包含射频信号的数据库,彩色多普勒成像模式下超声医学诊断仪接收通路波束形成器输出的结果和B-式。数据库中呈现的信号包含闪烁的伪影的符号。 基础包括研究五种不同幽灵的研究,总体积为10.5 GB。 射频数据以二进制形式存储。 分析射频数据所需的扫描设置包含在文本文件中。 每项研究伴随着以图形格式的特征超声图的示例。 数据库可在以下网址查阅:Https://mosmed.ai/datasets/ultrasound_doppler_twinkling_artifact.

代码可用性。为了查看和分析数据库,请将我们开发的TwinklingDataSetDisplay软件添加到存档中。程序源代码可用:https://github.com/Center-of-Diagnostics-and-Telemedicine/TwinklingDatasetDisplay.git.

使用条款。数据库可用于开发和测试用于处理超声信号的算法。 访问数据库和用于查看它的代码为每个人都打开。

作者简介

Denis V. Leonov

Moscow Center for Diagnostics and Telemedicine; National Research University Moscow Power Engineering Institute

Email: strat89@mail.ru
ORCID iD: 0000-0003-0916-6552
SPIN 代码: 5510-4075
Scopus 作者 ID: 56781375200
Researcher ID: P-5266-2017

Cand. Sci. (Tech)

俄罗斯联邦, 24 bld.1, Petrovka street,127051 Moscow; 28-1, Srednyaya Kalitnikovskaya street, Moscow, 109029

Roman V. Reshetnikov

Moscow Center for Diagnostics and Telemedicine; The First Sechenov Moscow State Medical University (Sechenov University)

Email: reshetnikov@fbb.msu.ru
ORCID iD: 0000-0002-9661-0254
SPIN 代码: 8592-0558

Cand. Sci. (Phys.-Math.)

俄罗斯联邦, 24 bld.1, Petrovka street,127051 Moscow; 127051 Moscow, Russia; 8 bld.2

Nikolay S. Kulberg

Moscow Center for Diagnostics and Telemedicine; Federal Research Center Computer Science and Control of the Russian Academy of Sciences

Email: kulberg@npcmr.ru
ORCID iD: 0000-0001-7046-7157
SPIN 代码: 2135-9543

Cand. Sci. (Phys.-Math.)

俄罗斯联邦, 24 bld.1, Petrovka street,127051 Moscow; 44, buil. 2, st. Vavilova, Moscow 119333

Anastasia A. Nasibullina

National Research University Moscow Power Engineering Institute

Email: nastya.nasibullina@yandex.ru
ORCID iD: 0000-0003-1695-7731
SPIN 代码: 2482-3372

Student

俄罗斯联邦, 28-1, Srednyaya Kalitnikovskaya street, Moscow, 109029

Alexandr I. Gromov

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

编辑信件的主要联系方式.
Email: gromov.ai@medsigroup.ru
ORCID iD: 0000-0002-9014-9022
SPIN 代码: 6842-8684

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Delegatskaya st., 20, p. 1, 127473, Moscow

参考

  1. Masch WR, Cohan RH, Ellis JH, et al. Clinical effectiveness of prospectively reported sonographic twinkling artifact for the diagnosis of renal calculus in patients without known urolithiasis. Am J Roentgenol. 2016;206:326–331. doi: 10.2214/ajr.15.14998
  2. Fujimoto Y, Shimono C, Shimoyama N, Osaki M. Twinkling artifact of microcalcifications in breast ultrasound. Ultrasound Med Biol. 2017;43(Suppl. 1):S21. doi: 10.1016/j.ultrasmedbio.2017.08.1010
  3. Bennett J.M., Estrada J.C., Shoemaker M.B., Pretorius M. Twinkling Artifact Associated with Guidewire Placement. Anesth Analg. 2015;121(1):69–71. doi: 10.1213/ane.0000000000000683
  4. Sen V, Imamoglu C, Kucukturkmen I, et al. Can Doppler ultrasonography Twinkling artifact be used as an alternative imaging modality to non-contrast-enhanced computed tomography in patients with ureteral stones? A prospective clinical study. Urolithiasis. 2017;45(2):215–219. doi: 10.1007/s00240-016-0891-8
  5. Winkel RR, Kalhauge A, Fredfeldt KE. The usefulness of ultrasound colour-Doppler twinkling artefact for detecting urolithiasis compared with low dose nonenhanced computerized tomography. Ultrasound Med Biol. 2012;38(7):1180–1187. doi: 10.1016/j.ultrasmedbio.2012.03.003
  6. Yavuz A, Ceken K, Alimoglu E, Kabaalioglu A. The reliability of color Doppler "twinkling" artifact for diagnosing millimetrical nephrolithiasis: comparison with B-Mode US and CT scanning results. J Med Ultrasonics. 2015;42(2):215–222. doi: 10.1007/s10396-014-0599-8
  7. Tian J, Xu L. Color Doppler Twinkling artifact in diagnosis of tuberculous pleuritis: A comparison with gray-scale ultrasonography and computed tomography. Ultrasound Med Biol. 2018;44(6): 1291–1295. doi: 10.1016/j.ultrasmedbio.2018.01.003
  8. Relea A, Alonso JA, González M, et al. Usefulness of the twinkling artifact on Doppler ultrasound for the detection of breast microcalcifications. Radiología. 2018;60(5):413–423. doi: 10.1016/j.rx.2018.04.004
  9. Lu W, Sapozhnikov OA, Bailey MR, et al. Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging. Ultrasound Med. 2013;39(6):1026–1038. doi: 10.1016/j.ultrasmedbio.2013.01.011
  10. Aytac SK, Ozcan H. Effect of color Doppler system on the «twinkling» sign associated with urinary tract calculi. J Clin Ultrasound. 1999;27(8):433–439. doi: 10.1002/(sici)1097-0096(199910)27:8<433::aid-jcu4>3.0.co;2-1
  11. Rahmouni A, Bargoin R, Herment A, et al. Color Doppler Twinkling artifactin hyperechoic regions. Radiology. 1996;199(1):269–271. doi: 10.1148/radiology.199.1.8633158
  12. Kamaya A, Tuthill T, Rubin JM. Twinkling artifact on color Doppler sonography: dependence on machine parameters and underlying cause. Am J Roentgenol. 2003;180(1):215–222. doi: 10.2214/ajr.180.1.1800215
  13. Weinstein SP, Seghal C, Conant EF, Patton JA. Microcalcifications in breast tissue phantoms visualized with acoustic resonance coupled with power doppler US: initial observations. Radiology. 2002:224(1):265–269. doi: 10.1148/radiol.2241010511
  14. Seghal C. Apparatus for imaging an element within a tissue and method therefor. United States Patent. 1999;477(5):997.
  15. Li T, Khokhlova TD, Sapozhnikov OA, et al. A new active cavitation mapping technique for pulsed HIFU applications–bubble Doppler. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(10): 1698–1708. doi: 10.1109/TUFFC.2014.006502
  16. Simon JC, Sapozhnikov OA, Kreider W, et al. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact. Phys Med Biol. 2018;63(2):025011. doi: 10.1088/1361-6560/aa9a2f
  17. Leonov DV, Kulberg NS, Gromov AI, et al. Diagnostic mode detecting solid mineral inclusions in medical ultrasound imaging. Acoust Phys. 2018;64(5):624–636. doi: 10.1134/S1063771018050068
  18. Yu AC, Johnston KW, Cobbold RS. Frequency-based signal processing for ultrasound color flow imaging. Canadian Acoustics. 2007;35(2):11–23.
  19. Yu AC, Løvstakken L. Eigen-based clutter filter design for ultrasound color flow imaging: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(5):1096–1111. doi: 10.1109/TUFFC.2010.1521
  20. Yu AC, Cobbold RS. Single-ensemble-based eigen-processing methods for color flow imaging ― Part I. The Hankel-SVD filter. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(3):559–572. doi: 10.1109/TUFFC.2008.682
  21. Shen Z, Feng N, Shen Y, Lee CH. An improved parametric relaxation approach to blood flow signal estimation with single-ensemble in color flow imaging. J Med Biomed Engineering. 2013;33(3):309–318. doi: 10.5405/jmbe.1368
  22. Yoo YM, Managuli R, Kim Y. Adaptive clutter filtering for ultrasound color flow imaging. Ultrasound Med Biol. 2003;29(9): 1311–1320. doi: 10.1016/S0301-5629(03)01014-7
  23. Torp H. Clutter rejection filters in color flow imaging: a theoretical approach. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):417–424. doi: 10.1109/58.585126
  24. Wang PD, Shen Y, Feng NZ. A novel clutter rejection scheme in color flow imaging. Ultrasonics. 2006;44( Suppl 1):e303–305. doi: 10.1016/j.ultras.2006.06.017
  25. Bjærum S, Torp H. Statistical evaluation of clutter filters in color flow imaging. Ultrasonics. 2000;38(1-8):376–380. doi: 10.1016/s0041-624x(99)00153-5
  26. Kargel C, Hoebenreich G, Plevnik G, et al. Velocity estimation and adaptive clutter filtering for color flow imaging. WSEAS. 2002. Р. 1711–1716.
  27. Kargel C, Höbenreich G, Trummer B, Insana MF. Adaptive clutter rejection filtering in ultrasonic strain-flow imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(7):824–835. doi: 10.1109/tuffc.2003.1214502
  28. Lo MT, Hu K, Peng CK, Novak V. Multimodal pressure flow analysis: application of hilbert huang transform in carabral blood flow regulation. EURASIP J Adv Signal Process. 2008;2008:785243. doi: 10.1155/2008/785243
  29. Gerbands JJ. On the relationships between SVD, KLT and PCA. Pattern Recognition. 1981;14:375–381. doi: 10.1016/0031-3203(81)90082-0
  30. Løvstakken L. Signal processing in diagnostic ultrasound: algorithms for real-time estimation and visualization of blood flow velocity. Doctoral thesis, norwegian university of science and technology. Trondheim; 2007. Available from: https://pdfslide.net/ documents/signal-processing-in-diagnostic-ultrasound-algorithms-for-real-time-.html. Accessed: 14.08.2021.
  31. XRAD C++ software library. Available from: https://github.com/ Center-of-Diagnostics-and-Telemedicine/xrad.git. Accessed: 14.08.2021.
  32. Leonov DV, Kulberg NS, Gromov AI., et al. Causes of ultrasound doppler twinkling artifact. Acoust Phys. 2018;64(1):105–114. doi: 10.1134/S1063771018010128
  33. Mari JM, Cachard C. Acquire real-time RF digital ultrasound data from a commercial scanner. Electronic J Technical Acoustics. 2007;3:28–43.
  34. Leonov DV, Kulberg NS, Gromov AI, Morozov SP. Detection of microcalcifications using the ultrasound Doppler twinkling artifact. Biomedical Engineering. 2020;54(3):174–178. doi: 10.1007/s10527-020-09998-y
  35. Leonov DV, Kulberg NS, Fin VA, et al. Clutter filtering for diagnostic ultrasound color flow imaging. Biomedical Engineering. 2019;53(3):217–221. doi: 10.1007/s10527-019-09912-1
  36. Leonov DV, Kulberg NS, Fin VA, et al. Comparison of filtering techniques in ultrasound color flow imaging. Biomedical Engineering. 2019;53(2):97–101. doi: 10.1007/s10527-019-09885-1
  37. Song P, Manduca A, Trzasko JD, Chen S. Ultrasound small vessel imaging with block-wise adaptive local clutter filtering. IEEE Trans Med Imaging. 2017;36(1):251–262. doi: 10.1109/TMI.2016.2605819
  38. Li YL, Hyun D, Abou-Elkacem L, et al. Visualization of small-diameter vessels by reduction of incoherent reverberation with coherent flow power doppler. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(11):1878–1889. doi: 10.1109/TUFFC.2016.2616112
  39. Chee AJ, Alfred CH. Receiver operating characteristic analysis of eigen-based clutter filters for ultrasound color flow imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;65(3):390–399. doi: 10.1109/TUFFC.2017.2784183
  40. Chee AJ, Yiu BY, Alfred CH. A GPU-Parallelized eigen-based clutter filter framework for ultrasound color flow imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(1):150–163. doi: 10.1109/TUFFC.2016.2606598

补充文件

附件文件
动作
1. JATS XML
2. 图5使用TwinklingDataSetDisplay程序的射频信号可视化的示例: a ― Gammex中的流体流动; b - 没有运动的软组织区域; c - 粗糙物体上闪烁的伪影的信号; d - 光滑对象上的闪烁伪影信号。 左栏中,复杂信号表示为极性坐标中的参数线(实际部分沿横坐标的轴线显示,沿纵轴沿着纵轴)。 右栏显示了对包内的“慢速”时间的依赖性。

下载 (798KB)
3. 图 7.Gammex 超声图幻影:a - 在流量为60º的线性传感器的研究中; b - 平行流; c - 研究凸传感器时

下载 (469KB)
4. 图 10.Blue Phantom幻影乳房:a - 外观; b - 包含方案; c - 计算机断层图像部分(箭头表示测试区域); d - 超声图。

下载 (519KB)
5. 图 11.用微晶在琼脂果冻中生长的微晶的声音图: a 显微镜下的A样品切片; b - 生长过程中的微晶; c - 琼脂 - 琼脂用微晶插入微晶。

下载 (557KB)
6. 图 12.用木杆(左)和钢丝(右)的幻影的声音图。

下载 (461KB)
7. 图 1.数据捕获方案。

下载 (52KB)
8. 图 2.彩色多普勒映射模式下扫描方案的说明。 垂直条带中的颜色对应于光线组中的光束号 (sweep)。 试验容器中显示红色。

下载 (99KB)
9. 图 3数据库组成

下载 (198KB)
10. 图4.* .dat文件中的“原始”射频数据的存储方案。

下载 (177KB)
11. 图 6.外观和 Gammex 1430 LE Mini-Doppler.幻影方案

下载 (213KB)
12. 图 8.专业幻像的摄影和图纸指示毫米和测量位置的尺寸

下载 (323KB)
13. 图 9.专业幻像的声图的示例,其指示位置和填充环境:a - 位置2(4杆,塑料与传感器平面平行); b - 位置3(木材4杆,位于传感器端的端部); c 是位置4(4个铝棒,位于传感器端的端部); d - 位置10(由木材,铝和塑料制成的杆,位于传感器)。

下载 (591KB)

版权所有 © Leonov D.V., Reshetnikov R.V., Kulberg N.S., Nasibullina A.A., Gromov A.I., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##