远程放射学在急诊超声图像解读中的作用

封面图片

如何引用文章

详细

论证。远程放射学是急诊医疗环境中的一项重要工具,尤其是在解读超声波图像时。在时间紧迫的紧急情况下,及时诊断和治疗是挽救病人生命的关键因素。远程放射学是一种创新的替代方法,可以扩大人员编制,解决急诊科放射科医生正常工作或加班不足的问题。

目的是评估远程放射学对急症护理环境中超声波图像解读的效果和影响。

材料和方法。这项回顾性研究涉及 2022 年 1 月至 12 月期间在美国 86 家医院就诊的 33 616 名患者。美国放射学会(总部位于印度班加罗尔的远程放射学服务官方提供商)的认证专家对急诊超声检查中获得的 37 253 张图像进行了放射学评估。

结果。拟议的远程医疗护理模式为 37 253 名患者提供了及时、高质量的超声图像解读,平均周转时间为 35.71 分钟(95% 置信区间为 35.50-35.91)。

结论。这项研究表明,结构化远程超声计划具有既定的图像采集、传输和参与者之间后续沟通的协议,能够在急症护理环境中实现快速的数据共享。

作者简介

Arjun Kalyanpur

Teleradiology Solutions

Email: arjun.kalyanpur@telradsol.com
ORCID iD: 0000-0003-2761-7273

MD

印度, Bangalore

Neetika Mathur

Image Core Lab

编辑信件的主要联系方式.
Email: neetika.mathur@imagecorelab.com
ORCID iD: 0009-0002-8884-2060

PhD

俄罗斯联邦, Bangalore

参考

  1. Kalyanpur A. The role of teleradiology in emergency radiology provision. Radiol Manage. 2014;36(3):46–49.
  2. Burute N, Jankharia B. Teleradiology: The Indian perspective. Indian Journal of Radiology and Imaging. 2009;19(1):16–18. doi: 10.4103/0971-3026.45337
  3. Michalke JA. An overview of emergency ultrasound in the United States. World J Emerg Med. 2012;3(2):85–90. doi: 10.5847/wjem.j.issn.1920-8642.2012.02.001
  4. Misra A, Yadav DC, Kole T. Emergency care in India beyond 75 years of independence — problems and solutions. J Glob Health. 2023;13:03015. doi: 10.7189/jogh.13.03015
  5. National Hospital Ambulatory Medical Care Survey: 2020 Emergency Department Summary Tables [Internet]. US: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data/nhamcs/web_tables/2020-nhamcs-ed-web-tables-508.pdf
  6. Perotte R, Lewin GO, Tambe U, et al. Improving Emergency Department Flow: Reducing Turnaround Time for Emergent CT Scans. AMIA Annu Symp Proc. 2018;2018:897–906.
  7. Agrawal A, Khandelwal N. Nucleating emergency radiology specialization in India. Emerg Radiol. 2016;23(2):101–103. doi: 10.1007/s10140-016-1381-6
  8. Abdolrazaghnejad A, Banaie M, Safdari M. Ultrasonography in Emergency Department; a Diagnostic Tool for Better Examination and Decision-Making. Adv J Emerg Med. 2018;2(1):e7. doi: 10.22114/AJEM.v0i0.40
  9. Nicola R, Dogra V. Ultrasound: the triage tool in the emergency department: using ultrasound first. Br J Radiol. 2016;89(1061):20150790. doi: 10.1259/bjr.20150790
  10. Islam SN, Deka N, Hussain Z. Role of Doppler Ultrasound in Assessing the Severity of Peripheral Arterial Diseases of the Lower Limb. J Med Ultrasound. 2021;29(4):277–280. doi: 10.4103/JMU.JMU_137_20
  11. Kalyanpur A, Meka S, Joshi K, Somashekaran Nair HT, Mathur N. Teleradiology in Tripura: Effectiveness of a Telehealth Model for the Rural Health Sector. International Journal of Health Technology and Innovation. 2022;1:7–12. doi: 10.60142/ijhti.v1i02.36
  12. Agrawal A. Emergency Teleradiology-Past, Present, and, Is There a Future? Front Radiol. 2022;2:866643. doi: 10.3389/fradi.2022.866643
  13. Kalyanpur A, Weinberg J, Neklesa V, et al. Emergency radiology coverage: technical and clinical feasibility of an international teleradiology model. Emerg Radiol. 2003;10(3):115–118. doi: 10.1007/s10140-003-0284-5
  14. Agrawal A, Agrawal A, Pandit M, Kalyanpur A. Systematic survey of discrepancy rates in an international teleradiology service. Emerg Radiol. 2011;18(1):23–29. doi: 10.1007/s10140-010-0899-2
  15. Chandramohan A, Krothapalli V, Augustin A, et al. Teleradiology and technology innovations in radiology: status in India and its role in increasing access to primary health care. The Lancet Regional Health — Southeast Asia. 2023;23. doi: 10.1016/j.lansea.2023.100195
  16. Thrall JH. Teleradiology Part I. History and Clinical Applications. Radiology. 2007;243(3):613–617. doi: 10.1148/radiol.2433070350
  17. Duarte ML, Dos Santos LR, Iared W, Peccin MS. Telementored ultrasonography: a narrative review. Sao Paulo Med J. 2022;140(2):310–319. doi: 10.1590/1516-3180.2020.0607.R2.15092021
  18. Bergquist HB, Burkholder TW, Muhammad Ali OA, Omer Y, Wallis LA. Considerations for service delivery for emergency care in low resource settings. African Journal of Emergency Medicine. 2020;10:S7–S11. doi: 10.1016/j.afjem.2020.07.002
  19. Agrawal A, Khandelwal N. Nucleating emergency radiology specialization in India. Emerg Radiol. 2016;23(2):101–103. doi: 10.1007/s10140-016-1381-6
  20. Fast Facts on U.S. Hospitals [Internet]. US: American Hospital Association. c2024. Available from: https://www.aha.org/statistics/fast-facts-us-hospitals
  21. Szabo I, Zag L, Takács I, et al. Quantile regression and an application: performance improvement of an emergency department in Eastern Europe. Hungarian Statistical Review. 2020;3(1):60–76. doi: 10.35618/hsr2020.01.en060
  22. Honig SE, Honig EL, Babiarz LB, et al. Critical findings: timing of notification in neuroradiology. AJNR Am J Neuroradiol. 2014;35(8):1485–1492. doi: 10.3174/ajnr.A3918

补充文件

附件文件
动作
1. JATS XML
2. 图 1. 按年龄组划分的患者分布情况。

下载 (88KB)
3. 图 2. 采用系统方法,根据临床表现和疾病症状划分病例。

下载 (182KB)
4. 图 3. 采用系统方法拍摄一系列图像的病例分布情况。

下载 (126KB)
5. 图 4. 多普勒成像病例的分布。

下载 (117KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).