Magnetic resonance imaging radiomics in prostate cancer radiology: what is currently known?

Cover Page

Cite item

Abstract

Diagnostic and treatment approaches in prostate cancer rely on a combination of magnetic resonance imaging and histological data.

This study aimed to introduce the basics of the current diagnostic approach in prostate cancer with a focus on texture analysis.

Texture analysis evaluates the relationships between image pixels using mathematical methods, which provide additional information. First-order texture analysis of features can have greater clinical reproducibility than higher-order texture features. Textural features that are extracted from diffusion coefficient maps have shown the greatest clinical relevance. Future research should focus on integrating machine learning methods to facilitate the use of texture analysis in clinical practice.

The development of automated segmentation methods is required to reduce the likelihood of including normal tissue in the area of interest. Texture analysis allows the noninvasive separation of patients into groups in terms of possible treatment options. Currently, few clinical studies reported on the differential diagnosis of clinically significant prostate cancer, including the Gleason and International Society of Urological Pathology grading. Large prospective studies are required to verify the diagnostic potential of textural features.

About the authors

Pavel B. Gelezhe

Moscow Center for Diagnostics and Telemedicine; European Medical Center

Email: gelezhe.pavel@gmail.com
ORCID iD: 0000-0003-1072-2202
SPIN-code: 4841-3234

MD, Cand. Sci. (Med.)

Russian Federation, 24-1 Petrovka street, 127051, Moscow; Moscow

Ivan A. Blokhin

Moscow Center for Diagnostics and Telemedicine

Email: i.blokhin@npcmr.ru
ORCID iD: 0000-0002-2681-9378
SPIN-code: 3306-1387
Russian Federation, 24-1 Petrovka street, 127051, Moscow

Serafim S. Semenov

Moscow Center for Diagnostics and Telemedicine; Moscow Clinical Scientific Center named after A.S. Loginov

Email: s.semenov@npcmr.ru
ORCID iD: 0000-0003-2585-0864
SPIN-code: 4790-0416

MD

Russian Federation, 24-1 Petrovka street, 127051, Moscow; Moscow

Damiano Caruso

Sapienza University of Rome; Sant’Andrea University Hospital

Author for correspondence.
Email: dcaruso85@gmail.com
ORCID iD: 0000-0001-9285-4764

MD, PhD, Department of Surgical and Medical Sciences and Translational Medicine, Radiology Unit

Italy, Rome; Rome

References

  1. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76(3):340–351. doi: 10.1016/j.eururo.2019.02.033
  2. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med. 2018;378(19):1767–1777. doi: 10.1056/NEJMoa1801993
  3. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. The Lancet. 2017;389(10071):815–822. doi: 10.1016/S0140-6736(16)32401-1
  4. Purysko AS, Rosenkrantz AB, Barentsz JO, et al. PI-RADS version 2: a pictorial update. Radiographics. 2016;36(5):1354–1372. doi: 10.1148/rg.2016150234
  5. Patel N, Henry A, Scarsbrook A. The value of MR textural analysis in prostate cancer. Clin Radiol. 2019;74(11):876–885. doi: 10.1016/j.crad.2018.11.007
  6. Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72(1):3–10. doi: 10.1016/j.crad.2016.09.013
  7. Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966;50(3):125–128.
  8. Young JC, Jeong KK, Kim N, et al. Functional MR imaging of prostate cancer. Radiographics. 2007;27(1): 63–75. doi: 10.1148/rg.271065078
  9. Nketiah G, Elschot M, Kim E, et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol. 2017;27(7):3050–3059. doi: 10.1007/s00330-016-4663-1
  10. Morone M, Bali MA, Tunariu N, et al. Whole-body MRI: current applications in oncology. AJR Am J Roentgenol. 2017;209(6):W336–W349. doi: 10.2214/AJR.17.17984
  11. Nowak J, Malzahn U, Baur AD, et al. The value of ADC, T2 signal intensity, and a combination of both parameters to assess Gleason score and primary Gleason grades in patients with known prostate cancer. Acta Radiol. 2016;57(1):107–114. doi: 10.1177/0284185114561915
  12. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
  13. Summers RM. Texture analysis in radiology: Does the emperor have no clothes? Abdom Radiol. 2017;42(2):342–345. doi: 10.1007/s00261-016-0950-1
  14. Bleker J, Kwee TC, Dierckx RA, et al. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol. 2020;30(3):1313–1324. doi: 10.1007/s00330-019-06488-y
  15. Scalco E, Rizzo G. Texture analysis of medical images for radiotherapy applications. Br J Radiol. 2017;90(1070):20160642. doi: 10.1259/bjr.20160642
  16. Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25(10):2840–2850. doi: 10.1007/s00330-015-3701-8
  17. Losnegard A, Reisæter L, Halvorsen OJ, et al. Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediateand high-risk prostate cancer patients. Acta Radiol. 2020;61(11):1570–1579. doi: 10.1177/0284185120905066
  18. Larue RT, Defraene G, Ruysscher DD, et al. Quantitative radiomics studies for tissue characterization: A review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665. doi: 10.1259/bjr.20160665
  19. Court LE, Fave X, Mackin D, et al. Computational resources for radiomics. Translational Cancer Research. 2016;5(4):340–348. doi: 10.21037/tcr.2016.06.17
  20. Laplacian of Gaussian Filter [Electronic resource]. Available from: https://academic.mu.edu/phys/matthysd/web226/Lab02.htm. Accessed: 21.11.2021.
  21. Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance. Proc Natl Acad Sci U S A. 2015;112(46):E6265–E6273. doi: 10.1073/pnas.1505935112
  22. Sidhu HS, Benigno S, Ganeshan B, et al. Textural analysis of multiparametric MRI detects transition zone prostate cancer. Eur Radiol. 2017;27(6):2348–2358. doi: 10.1007/s00330-016-4579-9
  23. Vignati A, Mazzetti S, Giannini V, et al. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol. 2015;60(7):2685–2701. doi: 10.1088/0031-9155/60/7/2685
  24. Sierra PS, Damodaran S, Jarrard D. Clinical and pathologic factors predicting reclassification in active surveillance cohorts. Int Braz J Urol. 2018;44(3):440. doi: 10.1590/S1677-5538.IBJU.2017.0320
  25. Murciano-Goroff YR, Wolfsberger LD, Parekh A, et al. Variability in MRI vs. ultrasound measures of prostate volume and its impact on treatment recommendations for favorable-risk prostate cancer patients: a case series. Radiat Oncol. 2014;9:200. doi: 10.1186/1748-717X-9-200
  26. Engels RR, Israël B, Padhani AR, et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 1: acquisition. Eur Urology. 2020;77(4):457–468. doi: 10.1016/j.eururo.2019.09.021
  27. Min X, Li M, Dong D, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method. Eur J Radiol. 2019;115:16–21. doi: 10.1016/j.ejrad.2019.03.010
  28. Westphalen AC, McCulloch CE, Anaokar JM, et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology. 2020;296(1):76–84. doi: 10.1148/radiol.2020190646
  29. Xu L, Zhang G, Zhao L, et al. Radiomics based on multiparametric magnetic resonance imaging to predict extraprostatic extension of prostate cancer. Front Oncol. 2020;10:940. doi: 10.3389/fonc.2020.00940
  30. Kuess P, Andrzejewski P, Nilsson D, et al. Association between pathology and texture features of multi parametric MRI of the prostate. Phys Med Biol. 2017;62(19):7833–7854. doi: 10.1088/1361-6560/aa884d
  31. Riaz N, Afaq A, Akin O, et al. Pretreatment endorectal coil magnetic resonance imaging findings predict biochemical tumor control in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Int J Radiat Oncol Biol Phys. 2012;84(3):707–711. doi: 10.1016/j.ijrobp.2012.01.009
  32. Gnep K, Fargeas A, Gutiérrez-Carvajal RE, et al. Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging. 2017;45(1):103–117. doi: 10.1002/jmri.25335
  33. Ginsburg SB, Rusu M, Kurhanewicz J, et al. Computer extracted texture features on T2w MRI to predict biochemical recurrence following radiation therapy for prostate cancer. SPIE. 2014;9035:903509. doi: 10.1117/12.2043937
  34. Park SY, Kim CK, Park BK, et al. Prediction of biochemical recurrence following radical prostatectomy in men with prostate cancer by diffusion-weighted magnetic resonance imaging: Initial results. Eur Radiol. 2011;21(5):1111–1118. doi: 10.1007/s00330-010-1999-9
  35. Woo S, Kim SY, Cho JY, et al. Preoperative evaluation of prostate cancer aggressiveness: Using ADC and ADC ratio in determining gleason score. AJR Am J Roentgenol. 2016;207(1):114–120. doi: 10.2214/AJR.15.15894
  36. Incoronato M, Aiello M, Infante T, et al. Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 2017;18(4):805. doi: 10.3390/ijms18040805
  37. Jamshidi N, Margolis DJ, Raman S, et al. Multiregional radiogenomic assessment of prostate microenvironments with multiparametric MR imaging and DNA whole-exome sequencing of prostate glands with adenocarcinoma. Radiology. 2017;284(1):109–119. doi: 10.1148/radiol.2017162827
  38. Stoyanova R, Pollack A, Takhar M, et al. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget. 2016;7(33):53362–53376. doi: 10.18632/oncotarget.10523

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A model of the radiomics workflow based on T2-weighted images in prostate cancer.

Download (241KB)
3. Fig. 2. Segmentation and evaluation of entropy of the tumor focus of the transitional zone of the prostate gland.

Download (317KB)
4. Fig. 1. Radiomics workflow model based on T2-weighted images in prostate cancer

Download (231KB)
5. Fig. 2. Segmentation and evaluation of the entropy of the tumor focus of the transition zone of the prostate

Download (317KB)

Copyright (c) 2022 Gelezhe P.B., Blokhin I.A., Semenov S.S., Caruso D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies