Diagnostic errors in assessing magnetic resonance imaging semiotics of primary extracerebral tumors: a case series

Cover Image

Cite item

Full Text

Abstract

Primary extracerebral tumors are represented by benign and malignant neoplasms of the meninges and cranial nerves. Their presurgical differential diagnosis is based on the analysis of magnetic resonance imaging semiotics. The critically significant aspects for classifying tumors of this group include the following: neoplasm structure, contrast enhancement type, delimiting from the brain tissue, and relationship with the meninges or cranial nerves. Differential diagnosis of extracerebral tumors based on visual analysis of magnetic resonance imaging data is generally not challenging because most tumors have typical magnetic resonance imaging semiotics. However, in cases with atypical magnetic resonance imaging signs, reliable differentiation of tumors can be challenging. Moreover, the greatest complexity is the differentiation of meningioma grades, distinction between solitary fibrous tumors and meningiomas, and identification of the tumor type when localized in the cerebellopontine angles. The case series presented the most typical features leading to errors in the differential diagnosis of primary extracerebral tumors. All the presented tumors were verified with postsurgical histological examination. The analysis of the case reports demonstrates that a review of the combined semiotic signs can lower the number of diagnostic errors.

About the authors

Evgeniy N. Surovcev

Samara State Medical University; Dr. Sergey Berezin Medical Institute (MIBS)

Author for correspondence.
Email: evgeniisurovcev@mail.ru
ORCID iD: 0000-0002-8236-833X
SPIN-code: 5252-5661
Scopus Author ID: 57224906215

MD

Russian Federation, Samara; Togliatti

Aleksandr V. Kapishnikov

Samara State Medical University

Email: a.v.kapishnikov@samsmu.ru
ORCID iD: 0000-0002-6858-372X
SPIN-code: 6213-7455
Scopus Author ID: 6507900025

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Samara

References

  1. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106
  2. Osborn AG, Salzman KL, Jhaveri MD. Diagnostic Imaging. Brain. Moscow: Izdatel’stvo Panfilova; 2018.
  3. Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-oncology. 2022;5(24 suppl. 5):v1–v95. doi: 10.1093/neuonc/noac202
  4. Goldbrunner R, Weller M, Regis J, et al. EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro-Oncology. 2020;22(1):31–45. doi: 10.1093/neuonc/noz153
  5. Goldbrunner R, Stavrinou P, Jenkinson MD, et al. EANO guideline on the diagnosis and management of meningiomas. Neuro-Oncology. 2021;23(11):1821–1834. doi: 10.1093/neuonc/noab150
  6. Roos DE, Patel SG, Potter AE, Zacest AC. When is an acoustic neuroma not an acoustic neuroma? Pitfalls for radiosurgeons. Journal of medical imaging and radiation oncology. 2015;59(4):474–479. doi: 10.1111/1754-9485.12328
  7. Cohen-Inbar O. Nervous System Hemangiopericytoma. The Canadian journal of neurological sciences. 2020;47(1):18–29. doi: 10.1017/cjn.2019.311
  8. Shin DW, Kim JH, Chong S, et al. Intracranial solitary fibrous tumor/hemangiopericytoma: tumor reclassification and assessment of treatment outcome via the 2016 WHO classification. Journal of Neuro-oncology. 2021;154(2):171–178. doi: 10.1007/s11060-021-03733-7
  9. Saigal G, Pisani L, Allakhverdieva E, et al. Utility of Microhemorrhage as a Diagnostic Tool in Distinguishing Vestibular Schwannomas from other Cerebellopontine Angle (CPA) Tumors. Indian Journal of Otolaryngology and Head and Neck Surgery. 2021;73(3):321–326. doi: 10.1007/s12070-021-02372-8
  10. Fountain DM, Young AMH, Santarius T. Malignant meningiomas. Handbook of Clinical Neurology. 2020;170:245–250. doi: 10.1016/B978-0-12-822198-3.00044-6
  11. Kabashi S, Ugurel MS, Dedushi K, Mucaj S. The Role of Magnetic Resonance Imaging (MRI) in Diagnostics of Acoustic Schwannoma. Acta Informatica Medica. 2020;28(4):287–291. doi: 10.5455/aim.2020.28.287-291
  12. Yan PF, Yan L, Zhang Z, et al. Accuracy of conventional MRI for preoperative diagnosis of intracranial tumors: A retrospective cohort study of 762 cases. International Journal of Surgery. 2016;36(Pt A):109–117. doi: 10.1016/j.ijsu.2016.10.023
  13. Ranabhat K, Bishokarma S, Agrawal P, et al. Role of MR Morphology and Diffusion-Weighted Imaging in the Evaluation of Meningiomas: Radio-Pathologic Correlation. JNMA. 2019;57(215):37–44. doi: 10.31729/jnma.3968
  14. Adeli A, Hess K, Mawrin C, et al. Prediction of brain invasion in patients with meningiomas using preoperative magnetic resonance imaging. Oncotarget. 2018;9(89):35974–35982. doi: 10.18632/oncotarget.26313
  15. Lin BJ, Chou KN, Kao HW, et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. Journal of Neurosurgery. 2014;121(5):1201–1208. doi: 10.3171/2014.7.JNS132359
  16. Verma PK, Nangarwal B, Verma J, et al. A clinico-pathological and neuro-radiological study of angiomatous meningioma: Aggressive look with benign behaviour. Journal of Clinical Neuroscience. 2021;83:43–48. doi: 10.1016/j.jocn.2020.11.032
  17. El-Abtah ME, Murayi R, Lee J, et al. Radiological Differentiation Between Intracranial Meningioma and Solitary Fibrous Tumor/ Hemangiopericytoma: A Systematic Literature Review. World Neurosurgery. 2023;170:68–83. doi: 10.1016/j.wneu.2022.11.062
  18. Ohba S, Murayama K, Nishiyama Y, et al. Clinical and Radiographic Features for Differentiating Solitary Fibrous Tumor/ Hemangiopericytoma From Meningioma. World Neurosurgery. 2019;130:e383–e392. doi: 10.1016/j.wneu.2019.06.094
  19. Meng Y, Chaohu W, Yi L, et al. Preoperative radiologic characters to predict hemangiopericytoma from angiomatous meningioma. Clinical Neurology and Neurosurgery. 2015;138:78–82. doi: 10.1016/j.clineuro.2015.08.005
  20. Wang C, Xu Y, Xiao X, et al. Role of intratumoral flow void signs in the differential diagnosis of intracranial solitary fibrous tumors and meningiomas. Journal of neuroradiology. 2016;43(5):325–330. doi: 10.1016/j.neurad.2016.06.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heterogeneity of structure and heterogeneity of contrasting of benign meningioma. On magnetic resonance imaging, signs of a cyst (arrow) are similar to manifestations of necrosis.

Download (146KB)
3. Fig. 2. Heterogeneity of the structure of benign meningioma. The hemorrhage zone (arrow) imparts pronounced heterogeneity to the tumor structure.

Download (160KB)
4. Fig. 3. Heterogeneity of contrast enhancement of benign meningioma. In some cases, benign meningiomas slightly and heterogeneously increase their signal characteristics after contrast enhancement (arrow).

Download (136KB)
5. Fig. 4. The absence of a cerebrospinal fluid gap between a benign meningioma and the brain tissue, and the presence of peripheral edema can be interpreted as tumor invasion: a — T2-WI; b — T1-CE. A benign meningioma is shown (*). The cerebrospinal fluid gap is visible only in the posterior sections (black arrows). In the anterior sections, the border between the tumor and the brain tissue is not visible; peripheral edema is determined in this area (white arrows).

Download (195KB)
6. Fig. 5. Atypical manifestations of malignant meningioma on magnetic resonance imaging: a — T2-WI; b — T1-WI; c — T1-CE. A malignant meningioma (*) located in the epiphyseal region is shown. Tumor invasion into the splenium of the corpus callosum is determined (arrow).

Download (252KB)
7. Fig. 6. Difficulty in determining the relationship of a tumor with a cranial nerve or meninges: a — neurinoma with no visual relationship with cranial nerves (the arrow shows the “intact” VII and VIII nerves in the internal auditory canal); b — meningioma with signs of a tumor connection with cranial nerves (arrow).

Download (226KB)
8. Fig. 7. Solitary fibrous tumor with MRI semiotics similar to benign meningioma: a — T2-WI; b — T1-WI; c — T1-CE. An extracerebral formation is determined in the anterior parts of the interhemispheric fissure (*).

Download (231KB)
9. Fig. 8. Solitary fibrous tumor with similar magnetic resonance imaging semiotics to malignant meningioma: a — T2-WI; b —T1-WI; c — T1-CE.

Download (203KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».