Bone mineral density radiopaque templates for cone beam computed tomography and multidetector computed tomography

Capa

Citar

Resumo

BACKGROUND: Cone beam computed tomography is widely applied for diagnostics and planning various manipulations in the maxillofacial region, for example, dental implantation. Its advantages include high spatial resolution, low radiation exposure, and cost-effectiveness. However, it has a significant drawback: the inability to determine the density of the jaw bone in Hounsfield Units (HU).

AIMS: This study aimed to develop radiopaque templates with sets of X-ray density based on potassium hydrophosphate and beta-tricalcium phosphate, to study templates on various cone beam computed tomography and multidetector computed tomography devices, and to determine a cross-calibration algorithm for assessing the bone mineral density of the jaw in HU.

MATERIALS AND METHODS: The bone mineral density template comprised microtubes (0.25 ml) with potassium hydrophosphate concentrations of 49.96, 99.98, 174.99, 349.99, and 549.98 mg/ml, and a suspension of beta-tricalcium phosphate with an equivalent concentration of potassium hydrophosphate 1,506 mg/ml, designed to simulate the types of bone density according to C. Mish. The study was carried out on two multidetector computed tomography and four cone beam computed tomography machines. Cross-calibration was referred on the “standard” multidetector computed tomography 1 mode 120 kV, 200 mA.

RESULTS: There was a significant scatter of the X-ray values (HU for multidetector computed tomography and GV for cone beam computed tomography) vs. bone mineral density, with varying slopes, bias, and curve shapes. After cross-calibration, good comparability corresponding to the multidetector computed tomography 1 mode was shown. The median of the differences before cross-calibration was 160 relative units (HU, GV), after decreased by 10 times and amounted to 16 rel. units (p=0.000). The mean difference for cone beam computed tomography was significantly higher (30 rel. units) than for multidetector computed tomography (8 rel. units) (p=0.024, Mann–Whitney U test).

CONCLUSION: The developed radiopaque template enables the standardization of densitometric indicators for cone beam computed tomography and various multidetector computed tomography modes. On average, the spread after cross-calibration is reduced by 10 times, which makes it possible to classify bone tissue in HU according to C. Mish.

Sobre autores

Shazmim Hossain

Peoples Friendship University of Russia

Email: shazmim@mail.ru
ORCID ID: 0000-0002-5410-1849

Assistant Lecturer

Rússia, Moscow

Alexey Petraikin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Autor responsável pela correspondência
Email: alexeypetraikin@gmail.com
ORCID ID: 0000-0003-1694-4682
Código SPIN: 6193-1656

MD, Dr. Sci. (Med.), Assistant Professor, Chief Researcher

Rússia, Moscow

Alexandr Muraev

Peoples Friendship University of Russia

Email: muraev_aa@pfur.ru
ORCID ID: 0000-0003-3982-5512
Código SPIN: 1431-5936

MD, Dr. Sci. (Med.), Professor

Rússia, Moscow

Aslan Danaev

Stavropol State Medical University

Email: aslandanaev111@mail.ru
ORCID ID: 0000-0003-4754-3101
Código SPIN: 7266-7722

Assistant Lecturer

Rússia, Stavropol

Dmitry Burenchev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: BurenchevDV@zdrav.mos.ru
ORCID ID: 0000-0003-2894-6255
Código SPIN: 2411-3959

MD, Dr. Sci. (Med.), Chief Researcher

Rússia, Moscow

Alexander Dolgalev

Stavropol State Medical University

Email: dolgalev@dolgalev.pro
ORCID ID: 0000-0002-6352-6750
Código SPIN: 5941-5771

MD, Dr. Sci. (Med.), Assistant Professor

Rússia, Stavropol

Yuriy Vasilev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: VasilevYA1@zdrav.mos.ru
ORCID ID: 0000-0002-0208-5218
Código SPIN: 4458-5608

MD, Cand. Sci. (Med.)

Rússia, Moscow

Darya Sharova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: SharovaDE@zdrav.mos.ru
ORCID ID: 0000-0001-5792-3912
Código SPIN: 1811-7595
Rússia, Moscow

Sergey Ivanov

Peoples Friendship University of Russia; The First Sechenov Moscow State Medical University (Sechenov University)

Email: syivanov@yandex.ru
ORCID ID: 0000-0001-5458-0192
Código SPIN: 2607-2679

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Rússia, Moscow; Moscow

Bibliografia

  1. Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46(552): 1016–1022. doi: 10.1259/0007-1285-46-552-1016
  2. Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77. doi: 10.11607/jomi.2014suppl.g1.4
  3. DenOtter TD, Schubert J. Hounsfield Unit. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  4. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26–35. doi: 10.1111/j.1600-0501.2004.01067.x
  5. Woelber JP, Fleiner J, Rau J, et al. Accuracy and usefulness of CBCT in periodontology: A systematic review of the literature. Int J Periodontics Restorative Dent. 2018;38(2):289–297. doi: 10.11607/prd.2751
  6. Song D, Shujaat S, de Faria Vasconcelos K, et al. Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects. BMC Med Imaging. 2021;21(1):23. doi: 10.1186/s12880-021-00557-9
  7. Savoldi F, Yon MJ, Kwok VM, et al. Accuracy of CBCT in the identification of mental, lingual, and retromolar foramina: A comparison with visual inspection of human dry mandibles. Int J Periodontics Restorative Dent. 2021;41(6):e277–e286. doi: 10.11607/prd.4770
  8. Levi C, Gray JE, McCullough EC, Hattery RR. The unreliability of CT numbers as absolute values. AJR Am J Roentgenol. 1982;139(3): 443–447. doi: 10.2214/ajr.139.3.443
  9. Petraikin AV, Skripnikova IA. Quantitative computed tomography, modern data. Review. Medical Imaging. 2021;25(4):134–146. (In Russ). doi: 10.24835/1607-0763-1049
  10. Ivanov DV, Kirillova IV, Kossovich LY, et al. Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bonemineral density using quantitative computed tomography. News Saratov University. 2020;20(2):205–219. (In Russ). doi: 10.18500/1816-9791-2020-20-2-205-219
  11. Petraikin AV, Smorchkova AK, Kudryavtsev ND, et al. Comparison of two asynchronous QCT methods. Medical Imaging. 2020;24(4): 108–118. (In Russ). doi: 10.24835/1607-0763-2020-4-108-118
  12. Witt RM, Cameron JR. Bone Standards. USAEC Progress Report No. COO-1422-42 US Atomic Energy Comission, Madison, Wisconsin; 1969.
  13. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980;4(4):493–500. doi: 10.1097/00004728-198008000-00018
  14. Hubbell JH. Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. National Institute of Standards and Technology, Gaithersburg, MD; 1969. doi: 10.6028/NBS.NSRDS.29
  15. International Commission on Radiation Units and Measurements (ICRU). Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report.1989;(44):1–189.
  16. Nikolaev AE, Korkunova OA, Blokhin IA, et al. Calcification density oncomputed tomography depending on scanning parameters: Phantom study. (In Russ). Med Imaging. 2020;24(4):119–132. doi: 10.24835/1607-0763-2020-4-119-132
  17. Gaur A, Dhillon M, Puri N, et al. Questionable accuracy of CBCT in determining bone density: A comparative CBCT-CT in vitro study. Dent Med Probl. 2022;59(3):413–419. doi: 10.17219/dmp/143504
  18. Martinez C, de Molina C, Desco M, Abella M. Optimization of a calibration phantom for quantitative radiography. Med Phys. 2021;48(3):1039–1053. doi: 10.1002/mp.14638
  19. Hu Z, Wang T, Pan X, et al. Comparison of diagnosis of cracked tooth using contrast-enhanced CBCT and micro-CT. Dentomaxillofac Radiol. 2021;50(7):20210003. doi: 10.1259/dmfr.20210003
  20. Lehmann L, Alvarez R, Macovski A, et al. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8(5):659–667. doi: 10.1118/1.595025
  21. Chuang KS, Huang H. Comparison of four dual energy image decomposition methods. Physics Med Biol. 1988;33(4):455. doi: 10.1088/0031-9155/33/4/005
  22. Gingold EL, Hasegawa BH. Systematic bias in basis material decomposition applied to quantitative dual-energy X-ray imaging. Med Phys. 1992;19(1):25–33. doi: 10.1088/0031-9155/33/4/005
  23. Cardinal HN, Fenster A. An accurate method for direct dual-energy calibration and decomposition. Med Phys. 1990;17(3):327–341. doi: 10.1118/1.596512
  24. Jacobs R, Salmon B, Codari M, et al. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health. 2018;18(1):88. doi: 10.1186/s12903-018-0523-5
  25. Dolgalev AA, Danaev AB, Yusupov RD, et al. Objective assessment of measurement error in significant cone-beam computed tomography in dental practice. Med Alphabet. 2022;(7):65–68. (In Russ). doi: 10.33667/2078-5631-2022-7-65-68
  26. Cassetta M, Stefanelli LV, Di Carlo S, et al. The accuracy of CBCT in measuring jaws bone density. Eur Rev Med Pharmacol Sci. 2012;16(10):1425–1429.
  27. Harvey S, Patel S. Guidelines and template for reporting on CBCT scans. Br Dent J. 2020;228(1):15–18. doi: 10.1038/s41415-019-1115-8
  28. Cassetta M, Stefanelli LV, Pacifici A, et al. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin Implant Dent Relat Res. 2014;16(4):471–478. doi: 10.1111/cid.12027
  29. Parsa A, Ibrahim N, Hassan B, et al. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res. 2015;26(1):e1–7. doi: 10.1111/clr.12315
  30. Van Dessel J, Nicolielo LF, Huang Y, et al. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur J Oral Implantol. 2017;10(1):95–105.
  31. Dillenseger JP, Matern JF, Gros CI, et al. MSCT versus CBCT: Evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging. Eur Radiol. 2015;25(2):505–515. doi: 10.1007/s00330-014-3439-8
  32. Schegerer AA, Lechel U, Ritter M, et al. Dose and image quality of cone-beam computed tomography as compared with conventional multislice computed tomography in abdominal imaging. Invest Radiol. 2014;49(10):675–684. doi: 10.1097/RLI.0000000000000069
  33. Veldhoen S, Schöllchen M, Hanken H, et al. Performance of cone-beam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on Phantom and cadaver head scans. Eur Radiol. 2017;27(2):790–800. doi: 10.1007/s00330-016-4387-2
  34. Grunz JP, Weng AM, Gietzen CH, et al. Evaluation of ultra-high-resolution cone-beam CT prototype of twin robotic radiography system for cadaveric wrist imaging. Acad Radiol. 202;28(10):e314–e322. doi: 10.1016/j.acra.2020.06.018
  35. Medelnik J, Hertrich K, Steinhäuser-Andresen S, et al. Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: An in vitro study. J Orofac Orthop. 2011;72(4):261–278. doi: 10.1007/s00056-011-0032-5
  36. Elshenawy H, Aly W, Salah N, et al. Influence of small, midi, medium and large fields of view on accuracy of linear measurements in CBCT imaging: Diagnostic accuracy study. Open Access Maced J Med Sci. 2019;7(6):1037–1041. doi: 10.3889/oamjms.2019.232

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. General sequence of the study steps: (a) original tubes with a radiopaque substance (radiopaque mineral density templates) in air; (b) original tubes with radiopaque substance in water; (c) example of fixing and examining templates using a cone-beam computed tomography scanner; (d) MIP reconstruction using multidetector computed tomography scanner; (e) example of viewing and processing original tube sections in DICOM format (Radiant) and evaluating their characteristics using the tested multidetector computed tomography scanner 3 (see Table 2, line 7).

Baixar (313KB)
3. Fig. 2. Radiopaque phantom with bone mineral density templates using the same visualization parameters of the “window” (window level 100/window width 1,500 for bone tissue) for (a) tested multidetector computed tomography scanner 3 and (b) cone-beam computed tomography scanner 2: different contrast intensity is visible, measured values of water density: 0,85 HU for multidetector scanner and 360 GV for cone beam scanner.

Baixar (186KB)
4. Fig. 4. Inverse dependencies compared with Figure 2: Mineral density versus radiographic density in GV and HU. The resulting lines of approximation were used to determine formulas for cross-calibration.

Baixar (337KB)
5. Fig. 5. Dependence of the recalculated radiographic densities (HU for MDCT and GV for CBCT) on preset bone mineral densities after cross-calibration. Good agreement is noted between the adjusted data. Cross-calibration was performed relative to the MDCT 1 scanner with 120 kV, 200-mA mode. CBCT, cone beam computed tomography scanner; MDCT 1, tested multidetector computed tomography scanner 1.

Baixar (169KB)

Declaração de direitos autorais © Eco-Vector, 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies