Coexistence of machine intelligence, cyber art, and diagnostics: is it possible?

Cover Image

Cite item

Abstract

The development of machine intelligence and the application of generative images created using it is a promising area of communication design and human–machine interaction. This letter to the editor represents the author’s vision of the use of generative images for diagnosing human conditions.

The use of machine intelligence as an interactive and intelligent diagnostic tool will allow a psychologist and a physician to effectively complement the therapeutic processes of controlled interactions of their users.

Libraries of models and sets of applications with text-to-image algorithms are already available that can be used by engineers and designers in the process of creating objects of modern digital art. They can also be applied in the investigation of new paradigms using visual communications and their application in experimental diagnostics.

About the authors

Andrey V. Vlasov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Izmerov Research Institute of Occupational Health

Author for correspondence.
Email: a.vlasov@npcmr.ru
ORCID iD: 0000-0001-9227-1892
SPIN-code: 3378-8650
Russian Federation, Moscow; Moscow

References

  1. Tanveer M, Richhariya B, Khan RU, et al. Machine learning techniques for the diagnosis of alzheimer’s disease: a review. ACM Transactions Multimedia Computing Communications Applications. 2020;16(1):35. doi: 10.1145/3344998
  2. Sharma S, Mandal PK. A comprehensive report on machine learning-based early detection of alzheimer’s disease using multi-modal neuroimaging data. ACM Computing Surveys. 2023;55(2):1–44. doi: 10.1145/3492865
  3. Koich MF, Pessotto F. Projective aspects on cognitive performance: distortions in emotional perception correlate with personality. Psicologia Reflexão Crítica. 2016;29(17):1–8. doi: 10.1186/s41155-016-0036-6
  4. Adaskina AA. Therapeutic possibilities of digital artistic creativity. Modern Foreign Psychology. 2021;10(4):107–116. (In Russ). doi: 10.17759/jmfp.2021100410
  5. Paladines-Jaramillo F, Egas-Reyes V, Ordonez-Camacho D, et al. Using virtual reality to detect, assess, and treat frustration. In: Morales R.G., Fonseca C., Salgado E.R., et al. (eds.) Information and communication technologies. TICEC 2020. Vol. 1307. Communications in Computer and Information Science. Springer, Cham, 2020. doi: 10.1007/978-3-030-62833-8_28
  6. Cetinic E, She J. Understanding and creating art with ai: review and outlook. ACM Trans Multimedia Comput Commun Applications. 2022;18(2):1–22. doi: 10.1145/3475799
  7. AlAmir M, AlGhamdi M. The Role of generative adversarial network in medical image analysis: an in-depth survey. ACM Computing Surveys. 2022. doi: 10.1145/3527849
  8. Ali H, Biswas R, Ali F, et al. The role of generative adversarial networks in brain MRI: a scoping review. Insights Into Imaging. 2022;13(8):1–15. doi: 10.1186/s13244-022-01237-0
  9. Lankinen K, Saari J, R Hari, et al. 2014. Intersubject consistency of cortical MEG signals during movie viewing. NeuroImage. 2014;92:217–224. doi: 10.1016/j.neuroimage.2014.02.004
  10. Nummenmaa L, Glerean E, Viinikainen M, et al. Emotions promote social interaction by synchronizing brain activity across individuals. Proceedings Nat Academy Sci. 2012;109(24):9599–9604. doi: 10.1073/pnas.120609510
  11. Tseng PH, Rajangam S, Lehew G, et al. Interbrain cortical synchronization encodes multiple aspects of social interactions in monkey pairs. Sci Rep. 2018;8(1):4699. doi: 10.1038/s41598-018-22679-x
  12. Shanechi MM. Brain-machine interfaces from motor to mood. Nat Neurosci. 2019;22(10):1554–1564. doi: 10.1038/s41593-019-0488-y
  13. Vlasov A. GALA Inspired by Neo Klimt: 2D images processing with implementation for interaction and perception studies (preprint). 2022. doi: 10.13140/RG.2.2.10806.57928
  14. Achlioptas P, Ovsjanikov M, Haydarov K, et al. ArtEmis: affective language for visual art. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), October 6, 2021:11569–11579. doi: 10.48550/arXiv.2101.07396
  15. Gala Klimt. Digital art collection of pictorial poems. Ridero. 2022. Available from: https://www.researchgate.net/project/GALA-KLIMT. Accessed: 15.08.2022.
  16. Vessel EA, Starr GG, Rubin N. The brain on art: intense aesthetic experience activates the default mode network. Front Hum Neurosci. 2012;6:66. doi: 10.3389/fnhum.2012.00066

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Images generated by a neural network.

Download (847KB)
3. Fig. 2. Images (a, b) generated by the neural network.

Download (792KB)

Copyright (c) 2022 Eco-vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies