Identification of the Dynamics of a Moving Object with the Use of Neural Networks


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for identification of the dynamics of a quadrotor-type vehicle is proposed. The method is based on the Elman recurrent neural network, which corresponds to the canonical form of a dynamic system in the space of states and does not require structural correction. The results of a numerical experiment reveal the convergence of the network learning algorithm with the use of an extended Kalman filter.

About the authors

Yu. N. Zolotukhin

Institute of Automation and Electrometry, Siberian Branch

Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090

K. Yu. Kotov

Institute of Automation and Electrometry, Siberian Branch

Author for correspondence.
Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090

A. M. Svitova

Institute of Automation and Electrometry, Siberian Branch

Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090

E. D. Semenyuk

Institute of Automation and Electrometry, Siberian Branch

Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090

M. A. Sobolev

Institute of Automation and Electrometry, Siberian Branch

Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Allerton Press, Inc.