Identification of the Dynamics of a Moving Object with the Use of Neural Networks
- Authors: Zolotukhin Y.N.1, Kotov K.Y.1, Svitova A.M.1, Semenyuk E.D.1, Sobolev M.A.1
-
Affiliations:
- Institute of Automation and Electrometry, Siberian Branch
- Issue: Vol 54, No 6 (2018)
- Pages: 617-622
- Section: Modeling in Physical and Technical Research
- URL: https://journals.rcsi.science/8756-6990/article/view/212628
- DOI: https://doi.org/10.3103/S8756699018060109
- ID: 212628
Cite item
Abstract
A method for identification of the dynamics of a quadrotor-type vehicle is proposed. The method is based on the Elman recurrent neural network, which corresponds to the canonical form of a dynamic system in the space of states and does not require structural correction. The results of a numerical experiment reveal the convergence of the network learning algorithm with the use of an extended Kalman filter.
About the authors
Yu. N. Zolotukhin
Institute of Automation and Electrometry, Siberian Branch
Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090
K. Yu. Kotov
Institute of Automation and Electrometry, Siberian Branch
Author for correspondence.
Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090
A. M. Svitova
Institute of Automation and Electrometry, Siberian Branch
Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090
E. D. Semenyuk
Institute of Automation and Electrometry, Siberian Branch
Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090
M. A. Sobolev
Institute of Automation and Electrometry, Siberian Branch
Email: kotov@idisys.iae.nsk.su
Russian Federation, pr. Akademika Koptyuga 1, Novosibirsk, 630090
Supplementary files
