Combustion Regime Monitoring by Flame Imaging and Machine Learning


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for automatic determination of combustion regimes using flame images on the basis of a convolutional neural network on labeled data is under consideration. It is shown that the accuracy of regime classification reaches 98% on the flame images of a gas burner. The results of the operation of the convolutional neural network and classification using different linear models are compared.

About the authors

S. S. Abdurakipov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: oleg.a.g.post@gmail.com
Russian Federation, pr. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

O. A. Gobyzov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Author for correspondence.
Email: oleg.a.g.post@gmail.com
Russian Federation, pr. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

M. P. Tokarev

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: oleg.a.g.post@gmail.com
Russian Federation, pr. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

V. M. Dulin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: oleg.a.g.post@gmail.com
Russian Federation, pr. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Allerton Press, Inc.