Classification of Hyperspectral Images with Different Methods of Training Set Formation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The efficiency of the methods of controlled spectral and spectral-spatial classification of vegetation types on the basis of hyperspectral pictures with different methods of training set formation is evaluated. The dependence of the classification accuracy on the number of spectral features is considered. It is shown that simultaneous allowance for spatial and spectral features ensures highquality classification of similarly looking types of vegetation by merely using training sets with the maximum degree of the pixel distribution over the image.

Sobre autores

S. Borzov

Institute of Automation and Electrometry, Siberian Branch

Autor responsável pela correspondência
Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090

O. Potaturkin

Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University

Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018