Classification of Hyperspectral Images with Different Methods of Training Set Formation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The efficiency of the methods of controlled spectral and spectral-spatial classification of vegetation types on the basis of hyperspectral pictures with different methods of training set formation is evaluated. The dependence of the classification accuracy on the number of spectral features is considered. It is shown that simultaneous allowance for spatial and spectral features ensures highquality classification of similarly looking types of vegetation by merely using training sets with the maximum degree of the pixel distribution over the image.

作者简介

S. Borzov

Institute of Automation and Electrometry, Siberian Branch

编辑信件的主要联系方式.
Email: borzov@iae.nsk.su
俄罗斯联邦, pr. Akademika Koptyuga 1, Novosibirsk, 630090

O. Potaturkin

Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University

Email: borzov@iae.nsk.su
俄罗斯联邦, pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018