Whey in 3D Printing: A Scoping Review

封面

如何引用文章

详细

Introduction: The issue of dairy whey utilization remains relevant despite advancements in modern processing technologies, such as membrane technologies, biotechnological approaches, and preservation methods. Global whey production exceeds 160 million tons annually and continues to grow, necessitating new solutions within the circular economy framework. In recent years, Industry 4.0 technologies, including 3D printing (3DP), have emerged as promising tools for processing dairy by-products. However, adapting whey protein products for 3DP requires further investigation of their properties and modification methods.Purpose: This scoping review aimed to analyze the potential and current applications of whey protein products as components of 3DP inks.Materials and Methods: The review was conducted in accordance with PRISMA-ScR guidelines. A literature review was conducted using ScienceDirect, Scopus, and PubMed (2010–2025) with a detailed search strategy. VosViewer was used for thematic analysis of the research field.Results: Analysis of 56 selected sources revealed that whey protein components (76% of cases involving WPI) are actively studied as ingredients for 3DP inks. Their potential applications span food production, including functional and personalized nutrition (e.g., for individuals with dysphagia), as well as biomedicine, tissue engineering, and the chemical industry. Research primarily focuses on the rheological, textural, and microstructural characteristics of 3DP materials, alongside modification methods, including adjusting ink composition, pre-3DP processing (such as pH regulation, heat, and mechanical treatment), and post-printing techniques (such as drying, carbonization, and microwave treatment).Conclusion: The review confirms the promise of whey proteins in 3DP materials. To advance research, the authors recommend systematizing knowledge on key components combined with whey proteins, predictive modeling of optimal formulations based on intermolecular interactions and functional properties, and integrating other whey-derived ingredients, such as hydrolysates, into 3DP applications.

作者简介

Ekaterina Bolshakova

All-Russian Dairy Research Institute

Email: ekaterina.bolshakova.ac@yandex.ru
ORCID iD: 0000-0002-8427-0387
SPIN 代码: 9732-9017

Natasha Poklar Ulrih

University of Ljubljana

Email: natasa.poklar@bf.uni-lj

参考

  1. Aït-Kaddour, A., Hassoun, A., Tarchi, I., Loudiyi, M., Boukria, O., Cahyana, Y., Ozogul, F., & Khwaldia, K. (2024). Transforming plant-based waste and by-products into valuable products using various “Food Industry 4.0” enabling technologies: A literature review. Science of The Total Environment, 955, 176872. https://doi.org/10.1016/j.scitotenv.2024.176872
  2. Araújo, J. F., Fernandes, J.-M., Madalena, D., Gonçalves, R. F. S., Vieira, J. M., Martins, J. T., Vicente, A. A., & Pinheiro, A. C. (2025). Development of 3D-printed foods incorporating riboflavin-loaded whey protein isolate nanostructures: Characterization and in vitro digestion. Food & Function, 16(5), 2124–2135. https://doi.org/10.1039/D4FO05102E
  3. Bareen, M. A., Joshi, S., Sahu, J. K., Prakash, S., & Bhandari, B. (2021). Assessment of 3D printability of heat acid coagulated milk semi-solids ‘soft cheese’ by correlating rheological, microstructural, and textural properties. Journal of Food Engineering, 300, 110506. https://doi.org/10.1016/j.jfoodeng.2021.110506
  4. Bareen, M. A., Sahu, J. K., Prakash, S., Bhandari, B., & Naik, S. (2023a). A novel approach to produce ready-to-eat sweetmeats with variable textures using 3D printing. Journal of Food Engineering, 344, 111410. https://doi.org/10.1016/j.jfoodeng.2023.111410
  5. Bareen, M. A., Joshi, S., Sahu, J. K., Prakash, S., & Bhandari, B. (2023b). Correlating process parameters and print accuracy of 3D-printable heat acid coagulated milk semisolids and polyol matrix: Implications for testing methods. Food Research International, 167, 112661. https://doi.org/10.1016/j.foodres.2023.112661
  6. Cai, Q., Zhong, Y., Huang, Q., Huang, G., & Lu, X. (2023). Co-incorporation of probiotics into 3D printed custard cream with hydrophilic and hydrophobic bioactives. Food Hydrocolloids, 142, 108809. https://doi.org/10.1016/j.foodhyd.2023.108809
  7. Cai, Q., Zhong, Y., Xu, M., Huang, Q., & Lu, X. (2022). 3D printed high oil custard cream: Effects of whey protein isolate, hydroxypropylated starch, and carrageenan on physicochemical properties and printing performance. LWT, 156, 113039. https://doi.org/10.1016/j.lwt.2021.113039
  8. Carvajal-Mena, N., Tabilo-Munizaga, G., Pérez-Won, M., & Lemus-Mondaca, R. (2022). Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. LWT, 155, 112931. https://doi.org/10.1016/j.lwt.2021.112931
  9. Chaudhary, V., Kajla, P., Verma, D., Singh, T. P., Kothakota, A., Prasath, V. A., Jeevarathinam, G., Kumar, M., Ramniwas, S., Rustagi, S., & Pandiselvam, R. (2023). Valorization of dairy wastes into wonder products by the novel use of microbial cell factories. Trends in Food Science & Technology, 142, 104221. https://doi.org/10.1016/j.tifs.2023.104221
  10. Chen, Y., McClements, D. J., Peng, X., Chen, L., Xu, Z., Meng, M., Zhou, X., Zhao, J., & Jin, Z. (2024). Starch as edible ink in 3D printing for food applications: a review. Critical Reviews in Food Science and Nutrition, 64(2), 456–471. https://doi.org/https://doi.org/10.1080/10408398.2022.2106546
  11. Cheng, Y., Wang, B., Lv, W., Zhong, Y., & Li, G. (2024). Effect of xanthan gum on physicochemical properties and 3D printability of emulsion-filled starch gels. Food Hydrocolloids, 149, 109613. https://doi.org/10.1016/j.foodhyd.2023.109613
  12. Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144
  13. Chow, C. Y., Thybo, C. D., Sager, V. F., Riantiningtyas, R. R., Bredie, W. L. P., & Ahrné, L. (2021). Printability, stability, and sensory properties of protein-enriched 3D-printed lemon mousse for personalised in-between meals. Food Hydrocolloids, 120, 106943. https://doi.org/10.1016/j.foodhyd.2021.106943
  14. Daffner, K., Ong, L., Hanssen, E., Gras, S., & Mills, T. (2021a). Characterising the influence of milk fat towards an application for extrusion-based 3D-printing of casein−whey protein suspensions via the pH−temperature-route. Food Hydrocolloids, 118, 106642. https://doi.org/10.1016/j.foodhyd.2021.106642
  15. Daffner, K., Vadodaria, S., Ong, L., Nöbel, S., Gras, S., Norton, I., & Mills, T. (2021b). Design and characterization of casein–whey protein suspensions via the pH–temperature-route for application in extrusion-based 3D-Printing. Food Hydrocolloids, 112, 105850. https://doi.org/10.1016/j.foodhyd.2020.105850
  16. Dong, S., Qian, Z., Liu, X., Liu, F., Zhan, Q., Hu, Q., & Zhao, L. (2024). Exploring gelation properties and structural features on 3D printability of compound proteins emulsion gels: Emphasizing pH-regulated non-covalent interactions with xanthan gum. Food Chemistry, 461, 141005. https://doi.org/10.1016/j.foodchem.2024.141005
  17. Du, Y., Zhang, M., & Chen, H. (2021). Effect of whey protein on the 3D printing performance of konjac hybrid gel. LWT, 140, 110716. https://doi.org/10.1016/j.lwt.2020.110716
  18. Feng, C., Zhang, M., & Bhandari, B. (2018). Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: A review. Critical Reviews in Food Science and Nutrition, 59(19), 3074–3081. https://doi.org/10.1080/10408398.2018.1481823
  19. Feng, M., Zhang, M., Mujumdar, A. S., & Guo, Z. (2024). Influence of components interaction in recombined food gels on 3D printing: A comprehensive review. Food Hydrocolloids, 151, 109782. https://doi.org/10.1016/j.foodhyd.2024.109782
  20. Feng, L., Li, M., Dai, Z., Xu, Y., Zhang, Z., Zhang, M., Yu, D., & Li, D. (2025). 3D printed emulsion gels stabilized by whey protein isolate/polysaccharide as sustained-release delivery systems of β-carotene. Carbohydrate Polymers, 355, 123429. https://doi.org/10.1016/j.carbpol.2025.123429
  21. Fan, F., Li, S., Huang, W., & Ding, J. (2022). Structural characterization and fluidness analysis of lactose/whey protein isolate composite hydrocolloids as printing materials for 3D printing. Food Research International, 152, 110908. https://doi.org/10.1016/j.foodres.2021.110908
  22. Ghazal, A. F., Zhang, M., & Guo, Z. (2023). Microwave-induced rapid 4D change in color of 3D printed apple/potato starch gel with red cabbage juice-loaded WPI/GA mixture. Food Research International, 172, 113138. https://doi.org/10.1016/j.foodres.2023.113138
  23. Ghobadi, F., Kalantarzadeh , R., Menarbazari, A. A., Salehi, G., Fatahi, Y., Simorgh, S., Orive, G., Dolatshahi-Pirouz, A., & Gholipourmalekabadi, M. (2025). Innovating chitosan-based bioinks for dermal wound healing: Current progress and future prospects. International Journal of Biological Macromolecules. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2025.140013
  24. Ghorbani, F., Kim, M., Ghalandari, B., Zhang, M., Varma, S. N., Schöbel, L., Liu, C., & Boccaccini, A. R. (2024). Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration. Acta Biomaterialia, 181, 188–201. https://doi.org/10.1016/j.actbio.2024.04.028
  25. Gogoi, D., Kumar, M., & Singh, J. (2024). A comprehensive review on hydrogel-based bio-ink development for tissue engineering scaffolds using 3D printing. Annals of 3D Printed Medicine, 15, 100159. https://doi.org/10.1016/j.stlm.2024.100159
  26. Gong, P., Yue, S., Wang, J., Xu, K., Yang, W., Li, N., Wang, J., Zhao, Y., Chen, F., & Guo, Y. (2025). Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing. International Journal of Biological Macromolecules, 295, 139562. https://doi.org/10.1016/j.ijbiomac.2025.139562
  27. Hassoun, A., Tarchi, I., & Aït-Kaddour, A. (2024). Leveraging the potential of fourth industrial revolution technologies to reduce and valorize waste and by-products in the dairy sector. Current Opinion in Green and Sustainable Chemistry, 47, 100927. https://doi.org/10.1016/j.cogsc.2024.100927
  28. Hewitt, E., Mros, S., Mcconnell, M., Cabral, J., & Ali, A. (2019). Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomedical Materials, 14(5). https://doi.org/10.1088/1748-605X/ab3344
  29. Hu, Z., Cao, W., Shen, L., Sun, Z., Yu, K., Zhu, Q., Ren, T., Zhang, L., Zheng, H., Gao, C., He, Y., Guo, C., Zhu, Y., & Ren, D. (2022). Scalable Milk-Derived Whey Protein Hydrogel as an Implantable Biomaterial. ACS Applied Materials & Interfaces, 14(25), 28501–28513. https://doi.org/10.1021/acsami.2c02361
  30. Hussain, S., Malakar, S., & Arora, V. K. (2021). Extrusion-Based 3D food printing: Technological approaches, material characteristics, printing stability, and post-processing. Food Engineering Reviews, 14(1), 100–119. https://doi.org/10.1007/s12393-021-09293-w
  31. Jeon, E. Y., Kim, Y., Yun, H.-J., Kim, B.-K., & Choi, Y.-S. (2024). 3D printing of materials and printing parameters with animal resources: A review. Food Science of Animal Resources, 44(2), 225–238. https://doi.org/10.5851/kosfa.2023.e73
  32. Ji, Y., Sun, Y., Chang, Y., Ye, H., & Shen, X. (2025). Development and characterization of a high internal phase Pickering emulsion stabilized by whey protein–based nanoparticles with excellent antioxidant activity for 3-dimensional printing. Journal of Dairy Science, 108(6), 5611–5627. https://doi.org/10.3168/jds.2024-26043
  33. Joshi, S., Sahu, J. K., Prakash, S., & Naik, S. N. (2024). Modulating the 3D printability of vitamin D3-nanoemulsion-based dairy gels: Influence of emulsifier on gel structure, printing behaviour and vitamin D3 retention. Journal of Food Engineering, 373, 112032. https://doi.org/10.1016/j.jfoodeng.2024.112032
  34. Kamlow, M.-A., Holt, T., Spyropoulos, F., & Mills, T. (2022). Release and co-release of model hydrophobic and hydrophilic actives from 3D printed kappa-carrageenan emulsion gels. Food Hydrocolloids, 132, 107852. https://doi.org/10.1016/j.foodhyd.2022.107852
  35. Kamlow, M.-A., Spyropoulos, F., & Mills, T. (2021). 3D printing of kappa-carrageenan emulsion gels. Food Hydrocolloids for Health, 1, 100044. https://doi.org/10.1016/j.fhfh.2021.100044
  36. Kayadurmus, H. M., Rezaei, A., Ilhan, E., Cesur, S., Sahin, A., Gunduz, O., Kalaskar, D. M., & Ekren, N. (2024). Whey protein-loaded 3D-printed poly (lactic) acid scaffolds for wound dressing applications. Biomedical Materials, 19(4), 045045. https://doi.org/10.1088/1748-605X/ad565d
  37. Kan, X., Dai, Z., Chen, D., Zeng, X., & Fan, X. (2023). High internal phase emulsion stabilized by whey protein isolate-gum Arabic Maillard conjugate: Characterization and application in 3D printing. Food Hydrocolloids, 145, 109137. https://doi.org/10.1016/j.foodhyd.2023.109137
  38. Kan, X., Zhang, S., Kwok, E., Chu, Y., Chen, L., & Zeng, X. (2024). Granular hydrogels with tunable properties prepared from gum Arabic and protein microgels. International Journal of Biological Macromolecules, 273, 132878. https://doi.org/10.1016/j.ijbiomac.2024.132878
  39. Kong, D., Zhang, M., Mujumdar, A. S., & Luo, Z. (2025). Novel heterogeneous 3D printing process of protein-polysaccharide gel containing orange juice sacs: Optimization of material properties and printing parameters. International Journal of Biological Macromolecules, 305, 141277. https://doi.org/10.1016/j.ijbiomac.2025.141277
  40. Li, G., Wang, B., Lv, W., Mu, R., & Zhong, Y. (2024). Effect of induction mode on 3D printing characteristics of whey protein isolate emulsion gel. Food Hydrocolloids, 146, 109255. https://doi.org/10.1016/j.foodhyd.2023.109255
  41. Li, M., Feng, L., Xu, Y., Nie, M., Li, D., Zhou, C., Dai, Z., Zhang, Z., & Zhang, M. (2023). Rheological property, β-carotene stability and 3D printing characteristic of whey protein isolate emulsion gels by adding different polysaccharides. Food Chemistry, 414, 135702. https://doi.org/10.1016/j.foodchem.2023.135702
  42. Li, N., Qiao, D., Zhao, S., Lin, Q., Zhang, B., & Xie, F. (2021). 3D printing to innovate biopolymer materials for demanding applications: A review. Materials Today Chemistry, 20, 100459. https://doi.org/10.1016/j.mtchem.2021.100459
  43. Li, W., Martin, G. J. O., & Ashokkumar, M. (2021). Turbulence-induced formation of emulsion gels. Ultrasonics Sonochemistry, 81, 105847. https://doi.org/10.1016/j.ultsonch.2021.105847
  44. Liu, L., & Ciftci, O. N. (2021). Effects of high oil compositions and printing parameters on food paste properties and printability in a 3D printing food processing model. Journal of Food Engineering, 288, 110135. https://doi.org/10.1016/j.jfoodeng.2020.110135
  45. Liu, H., Xing, F., Yu, P., Zhe, M., Shakya, S., Liu, M., Xiang, Z., Duan, X., & Ritz, U. (2024). Multifunctional aerogel: A unique and advanced biomaterial for tissue regeneration and repair. Materials & Design, 243, 113091. https://doi.org/10.1016/j.matdes.2024.113091
  46. Liu, Y., Liu, D., Wei, G., Ma, Y., Bhandari, B., & Zhou, P. (2018). 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science & Emerging Technologies, 49, 116–126. https://doi.org/10.1016/j.ifset.2018.07.018
  47. Liu, Y., Zhang, W., Wang, K., Bao, Y., Regenstein, J. M., & Zhou, P. (2019). Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance. Food and Bioprocess Technology, 12(12), 1967–1979. https://doi.org/10.1007/s11947-019-02344-5
  48. Liu, Y., Zhang, Y., Cai, L., Zeng, Q., & Wang, P. (2024). Protein and protein-polysaccharide composites-based 3D printing: The properties, roles and opportunities in future functional foods. International Journal of Biological Macromolecules, 272, 132884. https://doi.org/10.1016/j.ijbiomac.2024.132884
  49. Liu, Z., Chen, X., Li, H., Chitrakar, B., Zeng, Y., Hu, L., & Mo, H. (2024). 3D printing of nutritious dysphagia diet: Status and perspectives. Trends in Food Science and Technology, 147, 104478. https://doi.org/10.1016/j.tifs.2024.104478
  50. Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69, 83–94. https://doi.org/10.1016/j.tifs.2017.08.018
  51. Livas, D., Trachioti, M., Banou, S., Angelopoulou, M., Economou, A., Prodromidis, M., Petrou, P., Kakabakos, S., & Kokkinos, C. (2021). 3D printed microcell featuring a disposable nanocomposite Sb/Sn immunosensor for quantum dot-based electrochemical determination of adulteration of ewe/goat’s cheese with cow’s milk. Sensors and Actuators B: Chemical, 334, 129614. https://doi.org/10.1016/j.snb.2021.129614
  52. Llamas-Unzueta, R., Menéndez, J. A., Suárez, M., Fernández, A., & Montes-Morán, M. A. (2022). From whey robocasting to custom 3D porous carbons. Additive Manufacturing, 59, 103083. https://doi.org/10.1016/j.addma.2022.103083
  53. Llamas-Unzueta, R., Reguera-García, A., Sanz, I., Martin, C., Quintanilla, A., Menéndez, J. A., & Montes-Morán, M. A. (2024). 3D printed catalytic stirrers with permeable blades made of porous carbon. Additive Manufacturing, 87, 104233. https://doi.org/10.1016/j.addma.2024.104233
  54. Lu, Y., Schutyser, M. A. I., & Zhang, L. (2024). Enhancing 3D printing performance of O/W emulsions with asparagus fibre. Future Foods, 10, 100472. https://doi.org/10.1016/j.fufo.2024.100472
  55. Ma, Y., & Zhang, L. (2022). Formulated food inks for extrusion-based 3D printing of personalized foods: A mini review. Current Opinion in Food Science, 44, 100803. https://doi.org/10.1016/j.cofs.2021.12.012
  56. Maiz-Fernández, S., Pérez-Álvarez, L., Silván, U., Vilas-Vilela, J. L., & Lanceros-Méndez, S. (2022). pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation. Polymers, 14(3), 650. https://doi.org/10.3390/polym14030650
  57. Mohapatra, J., Kumar, R., Basak, B., Saratale, R. G., Saratale, G. D., Mishra, A., Tripathy, S. K., Jeon, B.-H., & Chakrabortty, S. (2025). A review on generation, composition, and valorization of dairy processing sludge: A circular economy-based sustainable approach. Journal of Industrial and Engineering Chemistry, 143, 45–64. https://doi.org/10.1016/j.jiec.2024.08.045
  58. Mu, X., Agostinacchio, F., Xiang, N., Pei, Y., Khan, Y., Guo, C., Cebe, P., Motta, A., & Kaplan, D. L. (2021). Recent advances in 3D printing with protein-based inks. Progress in Polymer Science, 115, 101375. https://doi.org/10.1016/j.progpolymsci.2021.101375
  59. Oliveira, S. M., Fasolin, L. H., Vicente, A. A., Fuciños, P., & Pastrana, L. M. (2020). Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 109, 106120. https://doi.org/10.1016/j.foodhyd.2020.106120
  60. Riantiningtyas, R. R., Sager, V. F., Chow, C. Y., Thybo, C. D., Bredie, W. L. P., & Ahrné, L. (2021). 3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties. Food Research International, 147, 110517. https://doi.org/10.1016/j.foodres.2021.110517
  61. Rong, L., Chen, X., Shen, M., Yang, J., Qi, X., Li, Y., & Xie, J. (2023). The application of 3D printing technology on starch-based product: A review. Trends in Food Science & Technology, 134, 149–161. https://doi.org/10.1016/j.tifs.2023.02.015
  62. Sager, V. F., Munk, M. B., Hansen, M. S., Bredie, W. L. P., & Ahrné, L. (2020). Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing. Foods, 10(1), 8. https://doi.org/10.3390/foods10010008
  63. Shang, W., Sun, Y., Song, J., Zhang, P., Hou, Y., Wang, H., & Tan, M. (2023). Novel high internal phase oleogels-in-water pickering emulsions stabilized solely by whey protein isolate for 3D printing and fucoxanthin delivery. Food Hydrocolloids, 140, 108609. https://doi.org/10.1016/j.foodhyd.2023.108609
  64. Shao, Y., Gan, N., Gao, B., & He, B. (2024). Sustainable 3D-printed β-galactosidase immobilization coupled with continuous-flow reactor for efficient lactose-free milk production. Chemical Engineering Journal, 481, 148557. https://doi.org/10.1016/j.cej.2024.148557
  65. Sharma, D., Manzoor, M., Yadav, P., Sohal, J. S., Aseri, G. K., & Khare, N. (2018). Bio-valorization of dairy whey for bioethanol by stress-tolerant yeast. In Fungi and their Role in Sustainable Development: Current Perspectives (pp. 349–366). Springer Singapore. https://doi.org/10.1007/978-981-13-0393-7_20
  66. Shen, C., Chen, W., Li, C., Chen, X., Cui, H., & Lin, L. (2023). 4D printing system stimulated by curcumin/whey protein isolate nanoparticles: A comparative study of sensitive color change and post-processing. Journal of Food Engineering, 342, 111357. https://doi.org/10.1016/j.jfoodeng.2022.111357
  67. Shi, X., Liu, J., Liu, Q., Chen, Q., Wang, H., Sun, F., & Kong, B. (2025). Influence of different carrageenan contents on the rheological properties and 3D printing suitability of whey isolate protein-based emulsion gels. Food Hydrocolloids, 161, 110839. https://doi.org/10.1016/j.foodhyd.2024.110839
  68. Shi, Y., Zhang, M., & Bhandari, B. (2021). Effect of addition of beeswax based oleogel on 3D printing of potato starch-protein system. Food Structure, 27, 100176. https://doi.org/10.1016/j.foostr.2021.100176
  69. Su, A., & Al’Aref, S. J. (2018). History of 3D printing. In 3D Printing Applications in Cardiovascular Medicine (pp. 1–10). Elsevier. https://doi.org/10.1016/b978-0-12-803917-5.00001-8
  70. Sümbelli, Y., Emir Diltemiz, S., Say, M. G., Ünlüer, Ö. B., Ersöz, A., & Say, R. (2021). In situ and non-cytotoxic cross-linking strategy for 3D printable biomaterials. Soft Matter, 17(4), 1008–1015. https://doi.org/10.1039/D0SM01734E
  71. Sun, Y., Juncos Bombin, A. D., Boyd, P., Dunne, N., & McCarthy, H. O. (2022). Application of 3D printing & 3D bioprinting for promoting cutaneous wound regeneration. Bioprinting, 28, e00230. https://doi.org/10.1016/j.bprint.2022.e00230
  72. Tamo, A. K., Djouonkep, L. D. W., & Selabi, N. B. S. (2024). 3D printing of polysaccharide-based hydrogel scaffolds for tissue engineering applications: A review. International Journal of Biological Macromolecules, 270, 132123. https://doi.org/10.1016/j.ijbiomac.2024.132123
  73. Taneja, H., Salodkar, S. M., Singh Parmar, A., & Chaudhary, S. (2022). Hydrogel based 3D printing: Bio ink for tissue engineering. Journal of Molecular Liquids, 367, 120390. https://doi.org/10.1016/j.molliq.2022.120390
  74. Thakur, R., Yadav, B. K., & Goyal, N. (2023). An insight into recent advancement in plant- and algae-based functional ingredients in 3D food printing ink formulations. Food and Bioprocess Technology, 16(9), 1919–1942. https://doi.org/10.1007/s11947-023-03040-1
  75. Tricco, A., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine, 169(7).
  76. Tut, T. A., Cesur, S., Ilhan, E., Sahin, A., Yildirim, O. S., & Gunduz, O. (2022). Gentamicin-loaded polyvinyl alcohol/whey protein isolate/hydroxyapatite 3D composite scaffolds with drug delivery capability for bone tissue engineering applications. European Polymer Journal, 179, 111580. https://doi.org/10.1016/j.eurpolymj.2022.111580
  77. Uranga, J., Carranza, T., Peñalba, M., Caba, K. de la, & Guerrero, P. (2024). Valorization of agar production residue as a filler in soy protein hydrogels for 3D printing. International Journal of Bioprinting, 9(4), 731. https://doi.org/10.18063/ijb.731
  78. Uribe-Alvarez, R., Murphy, C. P., Coleman-Vaughan, C., & O’Shea, N. (2023). Evaluation of ionic calcium and protein concentration on heat- and cold-induced gelation of whey protein isolate gels as a potential food formulation for 3D food printing. Food Hydrocolloids, 142, 108777. https://doi.org/10.1016/j.foodhyd.2023.108777
  79. Wang, Y., McClements, D. J., Bai, C., Xu, X., Sun, Q., Jiao, B., Miao, S., Wang, Q., & Dai, L. (2024). Application of proteins in edible inks for 3D food printing: A review. Trends in Food Science and Technology, 153, 104691. https://doi.org/10.1016/j.tifs.2024.104691
  80. Wang, J., Jiang, X., Gan, H., Li, S., Peng, K., Sun, Y., Ma, M., & Yi, Y. (2025). Complexation-driven 3D printable whey protein-lotus root composite gels for dysphagia foods. Carbohydrate Polymers, 366, 123864. https://doi.org/10.1016/j.carbpol.2025.123864
  81. Wang, Y., Wu, Y., Chen, Z., Zhong, B., & Liu, B. (2025). Intelligent food packaging materials: Principles, types, applications, and hydrophobization. Food Control, 171, 111138. https://doi.org/10.1016/j.foodcont.2025.111138
  82. Wang, Z., Chen, F., Deng, Y., Tang, X., Li, P., Zhao, Z., Zhang, M., & Liu, G. (2024). Texture characterization of 3D printed fibrous whey protein-starch composite emulsion gels as dysphagia food: A comparative study on starch type. Food Chemistry, 458, 140302. https://doi.org/10.1016/j.foodchem.2024.140302
  83. Wu, R., Jiang, J., An, F., Ma, X., & Wu, J. (2024). Research progress of 3D printing technology in functional food, powering the future of food. Trends in Food Science & Technology, 149, 104545. https://doi.org/10.1016/j.tifs.2024.104545
  84. Xia, S., Wang, Q., Rao, Z., Lei, X., Zhao, J., Lei, L., & Ming, J. (2024). High internal phase pickering emulsions stabilized by zein/whey protein nanofibril complexes: Preparation and lycopene loading. Food Chemistry, 452, 139564. https://doi.org/10.1016/j.foodchem.2024.139564
  85. Xian, D., Wu, L., Lin, K., Liu, P., Wu, S., Yuan, Y., & Xie, F. (2024). Augmenting corn starch gel printability for architectural 3D modeling for customized food. Food Hydrocolloids, 156, 110294. https://doi.org/10.1016/j.foodhyd.2024.110294
  86. Xu, B., Jia, Y., Li, B., Ma, H., & Yang, W. (2023). Ultrastable emulsions constructed by self-assembly of two protein-polyphenol- anionic polysaccharide ternary complexes-stablized high internal phase emulsions. LWT, 176, 114517. https://doi.org/10.1016/j.lwt.2023.114517
  87. Zhao, W., Li, Y., Xue, C., & Wei, Z. (2025). Fabrication of emulsion-templated oleogels with whey protein isolate and carboxymethyl chitosan for delivery of Antarctic krill oil. Food Research International, 213, 116611. https://doi.org/10.1016/j.foodres.2025.116611
  88. Zhang, Y., Wang, Y., Dai, X., Li, Y., Jiang, B., Li, D., Liu, C., & Feng, Z. (2024). Biointerfacial supramolecular self-assembly of whey protein isolate nanofibrils on probiotic surface to enhance survival and application to 3D printing dysphagia foods. Food Chemistry, 460, 140720. https://doi.org/10.1016/j.foodchem.2024.140720
  89. Zhang, R., Huang, H., Ai, R., Li, D., Xu, Y., Jin, W., & Luo, Z. (2024). Fabrication of telechelic DNA-bridged food emulsion gel as edible ink for 3D printing. Food Quality and Safety, 8. https://doi.org/10.1093/fqsafe/fyad063
  90. Zheng, L., Li, D., Wang, L., & Wang, Y. (2024). Tailoring 3D-printed high internal phase emulsion-rice starch gels: Role of amylose in rheology and bioactive stability. Carbohydrate Polymers, 331, 121891. https://doi.org/10.1016/j.carbpol.2024.121891
  91. Zheng, Z., Zhang, M., & Liu, Z. (2021). Investigation on evaluating the printable height and dimensional stability of food extrusion-based 3D printed foods. Journal of Food Engineering, 306, 110636. https://doi.org/10.1016/j.jfoodeng.2021.110636
  92. Zhu, S., Ruiz De Azua, I. V., Feijen, S., Van Der Goot, A. J., Schutyser, M., & Stieger, M. (2021). How macroscopic structure of 3D printed protein bars filled with chocolate influences instrumental and sensory texture. LWT, 151, 112155. https://doi.org/10.1016/j.lwt.2021.112155

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».