Bioinformatic Analysis of Changes in the Peptide Profile of Dairy Proteins During Storage
- Авторлар: Soltan O.I.1
-
Мекемелер:
- Minia University
- Шығарылым: Том 3, № 1 (2025)
- Беттер: 17-32
- Бөлім: ORIGINAL EMPIRICAL RESEARCH
- URL: https://journals.rcsi.science/2949-6497/article/view/352299
- DOI: https://doi.org/10.37442/fme.2025.1.79
- ID: 352299
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Osama Soltan
Minia University
Email: usama.soultan@mu.edu.eg
ORCID iD: 0000-0002-7529-2007
Әдебиет тізімі
Barati, F., Hosseini, F., Vafaee, R., Sabouri, Z., Ghadam, P., Arab, S. S., Shadfar, N., & Piroozmand, F. (2024). In silico approaches to investigate enzyme immobilization: A comprehensive systematic review. Physical Chemistry Chemical Physics, 26(7), 5744–5761. https://doi.org/10.1039/D3CP03989G Baur, C., Krewinkel, M., Kranz, B., Von Neubeck, M., Wenning, M., Scherer, S., Stoeckel, M., Hinrichs, J., Stressler, T., & Fischer, L. (2015). Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, 49, 23–29. https://doi.org/10.1016/j.idairyj.2015.04.005 Chavan, R. S., Chavan, S. R., Khedkar, C. D., & Jana, A. H. (2011). UHT Milk Processing and Effect of Plasmin Activity on Shelf Life: A Review. Comprehensive Reviews in Food Science and Food Safety, 10(5), 251–268. https://doi.org/10.1111/j.1541-4337.2011.00157.x Class, L.-C., Kuhnen, G., Schmid, J., Rohn, S., & Kuballa, J. (2024). Marker Peptides for Indicating the Spoilage of Milk—Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model. Foods, 13(20), 3315. https://doi.org/10.3390/foods13203315 Crudden, A., Afoufa-Bastien, D., Fox, P. F., Brisson, G., & Kelly, A. L. (2005). Effect of hydrolysis of casein by plasmin on the heat stability of milk. International Dairy Journal, 15(10), 1017–1025. https://doi.org/10.1016/j.idairyj.2004.11.001 Dalabasmaz, S., Dittrich, D., Kellner, I., Drewello, T., & Pischetsrieder, M. (2019). Identification of peptides reflecting the storage of UHT milk by MALDI-TOF-MS peptide profiling. Journal of Proteomics, 207, 103444. https://doi.org/10.1016/j.jprot.2019.103444 Dellafiora, L., Galaverna, G., Reverberi, M., & Dall’Asta, C. (2017). Degradation of Aflatoxins by Means of Laccases from Trametes versicolor: An In Silico Insight. Toxins, 9(1), 17. https://doi.org/10.3390/toxins9010017 Du, L., Lu, W., Zhang, Y., Gao, B., & Yu, L. (2020). Detection of milk powder in liquid whole milk using hydrolyzed peptide and intact protein mass spectral fingerprints coupled with data fusion technologies. Food Science & Nutrition, 8(3), 1471–1479. https://doi.org/10.1002/fsn3.1430 Fan, X., Wang, C., Cheng, M., Wei, H., Gao, X., Ma, M., Wang, X., & Li, Z. (2023). Markers and Mechanisms of Deterioration Reactions in Dairy Products. Food Engineering Reviews, 15(2), 230–241. https://doi.org/10.1007/s12393-023-09331-9 Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., & O’Mahony, J. A. (2015). Heat-Induced Changes in Milk. В P. F. Fox, T. Uniacke-Lowe, P. L. H. McSweeney, & J. A. O’Mahony, Dairy Chemistry and Biochemistry (сс. 345–375). Springer International Publishing. https://doi.org/10.1007/978-3-319-14892-2_9 France, T. C., O’Mahony, J. A., & Kelly, A. L. (2021). The Plasmin System in Milk and Dairy Products. В A. L. Kelly & L. B. Larsen (Ред.), Agents of Change (сс. 11–55). Springer International Publishing. https://doi.org/10.1007/978-3-030-55482-8_2 Gupta, A., Mann, B., Kumar, R., & Sangwan, R. B. (2010). Identification of antioxidant peptides in cheddar cheese made with adjunct culture Lactobacillus casei ssp. casei 300. Milchwissenschaft, 65(4), 396-399. Iram, D., Sansi, M. S., Zanab, S., Vij, S., Ashutosh, & Meena, S. (2022). In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins—A molecular docking study. Journal of Food Biochemistry, 46(11). https://doi.org/10.1111/jfbc.14137 Kartal, C., Kaplan Türköz, B., & Otles, S. (2020). Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. Journal of Food Measurement and Characterization, 14(4), 1865–1883. https://doi.org/10.1007/s11694-020-00434-z Kruchinin, A., & Bolshakova, E. (2022). Hybrid Strategy of Bioinformatics Modeling (in silico): Biologically Active Peptides of Milk Protein. Food Processing: Techniques and Technology, 46–57. https://doi.org/10.21603/2074-9414-2022-1-46-57 Kruchinin, A. G., Bolshakova, E. I., & Barkovskaya, I. A. (2023). Bioinformatic Modeling (In Silico) of Obtaining Bioactive Peptides from the Protein Matrix of Various Types of Milk Whey. Fermentation, 9(4), 380. https://doi.org/10.3390/fermentation9040380 Lu, M., & Wang, N. S. (2017). Spoilage of Milk and Dairy Products. В The Microbiological Quality of Food (сс. 151–178). Elsevier. https://doi.org/10.1016/B978-0-08-100502-6.00010-8 Matéos, A., Guyard-Nicodème, M., Baglinière, F., Jardin, J., Gaucheron, F., Dary, A., Humbert, G., & Gaillard, J.-L. (2015). Proteolysis of milk proteins by AprX, an extracellular protease identified in Pseudomonas LBSA1 isolated from bulk raw milk, and implications for the stability of UHT milk. International Dairy Journal, 49, 78–88. https://doi.org/10.1016/j.idairyj.2015.04.008 Meltretter, J., Schmidt, A., Humeny, A., Becker, C.-M., & Pischetsrieder, M. (2008). Analysis of the Peptide Profile of Milk and Its Changes during Thermal Treatment and Storage. Journal of Agricultural and Food Chemistry, 56(9), 2899–2906. https://doi.org/10.1021/jf073479o Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. International Journal of Molecular Sciences, 20(23), 5978. https://doi.org/10.3390/ijms20235978 Muir, D. D. (2011). The stability and shelf life of milk and milk products. В Food and Beverage Stability and Shelf Life (сс. 755–778). Elsevier. https://doi.org/10.1533/9780857092540.3.755 Nath, A., Eren, B. A., Zinia Zaukuu, J.-L., Koris, A., Pásztorné-Huszár, K., Szerdahelyi, E., & Kovacs, Z. (2022). Detecting the Bitterness of Milk-Protein-Derived Peptides Using an Electronic Tongue. Chemosensors, 10(6), 215. https://doi.org/10.3390/chemosensors10060215 Panjaitan, F. C. A., Gomez, H. L. R., & Chang, Y.-W. (2018). In Silico Analysis of Bioactive Peptides Released from Giant Grouper (Epinephelus lanceolatus) Roe Proteins Identified by Proteomics Approach. Molecules, 23(11), 2910. https://doi.org/10.3390/molecules23112910 Pooja, K., Rani, S., Kanwate, B., & Pal, G. K. (2017). Physico-chemical, Sensory and Toxicity Characteristics of Dipeptidyl Peptidase-IV Inhibitory Peptides from Rice Bran-derived Globulin Using Computational Approaches. International Journal of Peptide Research and Therapeutics, 23(4), 519–529. https://doi.org/10.1007/s10989-017-9586-4 Quintieri, L., Caputo, L., Brasca, M., & Fanelli, F. (2021). Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods, 10(12), 3088. https://doi.org/10.3390/foods10123088 Remenant, B., Jaffrès, E., Dousset, X., Pilet, M.-F., & Zagorec, M. (2015). Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiology, 45, 45–53. https://doi.org/10.1016/j.fm.2014.03.009 Sedaghati, M., Ezzatpanah, H., Mashhadi Akbar Boojar, M., Tajabadi Ebrahimi, M., & Kobarfard, F. (2016). Isolation and identification of some antibacterial peptides in the plasmin-digest of β-casein. LWT - Food Science and Technology, 68, 217–225. https://doi.org/10.1016/j.lwt.2015.12.019 Stuknytė, M., Decimo, M., Colzani, M., Silvetti, T., Brasca, M., Cattaneo, S., Aldini, G., & De Noni, I. (2016). Extracellular thermostable proteolytic activity of the milk spoilage bacterium Pseudomonas fluorescens PS19 on bovine caseins. Journal of Dairy Science, 99(6), 4188–4195. https://doi.org/10.3168/jds.2016-10894 Thesbjerg, M. N., Nielsen, S. D.-H., Sundekilde, U. K., Poulsen, N. A., & Larsen, L. B. (2023). Fingerprinting of Proteases, Protease Inhibitors and Indigenous Peptides in Human Milk. Nutrients, 15(19), 4169. https://doi.org/10.3390/nu15194169 Van Asselt, A. J., Sweere, A. P. J., Rollema, H. S., & De Jong, P. (2008). Extreme high-temperature treatment of milk with respect to plasmin inactivation. International Dairy Journal, 18(5), 531–538. https://doi.org/10.1016/j.idairyj.2007.11.019 Verhegghe, M., De Block, J., Heyndrickx, M., Van Coillie, E., Van Poucke, C., & Duquenne, B. (2021). Application of LC‐HRMS identified marker peptides in an LC‐MS/MS method for detection and quantification of heat‐resistant proteolytic activity in raw milk. International Journal of Dairy Technology, 74(2), 286–296. https://doi.org/10.1111/1471-0307.12754 Xiong, Z., He, Y., Guan, W., Lv, X., Chen, J., & Ma, D. (2024). Investigating the impact of common migration substances found in milk packaging on proteases: A multispectral and molecular docking approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 318, 124517. https://doi.org/10.1016/j.saa.2024.124517 Yan, L., Langlois, B. E., O’Leary, J., & Hicks, C. L. (1985). Purification and Characterization of Four Extracellular Proteases Isolated from Raw Milk Psychrotrophs. Journal of Dairy Science, 68(6), 1323–1336. https://doi.org/10.3168/jds.S0022-0302(85)80968-1 Zhang, Y., Aryee, A. N., & Simpson, B. K. (2020). Current role of in silico approaches for food enzymes. Current Opinion in Food Science, 31, 63–70. https://doi.org/10.1016/j.cofs.2019.11.003
Қосымша файлдар

