Bioinformatic Analysis of Changes in the Peptide Profile of Dairy Proteins During Storage

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction: Enzymatic processes occurring in dairy products during storage can lead to changes in protein composition, affecting products’ quality. Key players in these changes include endogenous enzymes, such as plasmin, and bacterial proteases like the heat stable protease from Pseudomonas LBSA1. The application of bioinformatic methods enables the modeling of protein hydrolysis and prediction of peptide formation with specific properties (e.g., organoleptic characteristics, bioactivity, molecular weight, amino acid sequence).Purpose: To evaluate changes in the peptide profiles of β-CN, αs1-CN, αs2-CN, and κ-CN caseins during simulated hydrolysis by plasmin and the heat stable bacterial protease Pseudomonas LBSA1.Materials and Methods: Casein sequences were analyzed using the UniProt database. Hydrolysis was modeled using BIOPEP-UWM (for plasmin) and regular expressions in RStudio (for Pseudomonas LBSA1). The degree of hydrolysis (DH) was calculated as the ratio of cleaved peptide bonds to the total possible bonds in the protein. Peptide sequences were analyzed using the “stringr” library in RStudio. Bitter and antioxidant peptides were identified using the BIOPEP-UWM database. Molecular weight and isoelectric point data were obtained via the “Peptides” library in RStudio.Results: 2D diagrams revealed distinct distributions of peptides based on molecular weight and isoelectric point, dependent on enzyme specificity. In the combined hydrolysis model, 4 bitter peptides, 3 types of bitter amino acids, and 6 antioxidant peptides were identified.Conclusion: Bioinformatic modeling enables the prediction of enzymatic changes in milk proteins during storage, their impact on quality, and enhances the efficiency of related experiments. These findings may support the development of approaches for assessing dairy product storage conditions and identifying quality markers.

Авторлар туралы

Osama Soltan

Minia University

Email: usama.soultan@mu.edu.eg
ORCID iD: 0000-0002-7529-2007

Әдебиет тізімі

  1. Barati, F., Hosseini, F., Vafaee, R., Sabouri, Z., Ghadam, P., Arab, S. S., Shadfar, N., & Piroozmand, F. (2024). In silico approaches to investigate enzyme immobilization: A comprehensive systematic review. Physical Chemistry Chemical Physics, 26(7), 5744–5761. https://doi.org/10.1039/D3CP03989G
  2. Baur, C., Krewinkel, M., Kranz, B., Von Neubeck, M., Wenning, M., Scherer, S., Stoeckel, M., Hinrichs, J., Stressler, T., & Fischer, L. (2015). Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, 49, 23–29. https://doi.org/10.1016/j.idairyj.2015.04.005
  3. Chavan, R. S., Chavan, S. R., Khedkar, C. D., & Jana, A. H. (2011). UHT Milk Processing and Effect of Plasmin Activity on Shelf Life: A Review. Comprehensive Reviews in Food Science and Food Safety, 10(5), 251–268. https://doi.org/10.1111/j.1541-4337.2011.00157.x
  4. Class, L.-C., Kuhnen, G., Schmid, J., Rohn, S., & Kuballa, J. (2024). Marker Peptides for Indicating the Spoilage of Milk—Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model. Foods, 13(20), 3315. https://doi.org/10.3390/foods13203315
  5. Crudden, A., Afoufa-Bastien, D., Fox, P. F., Brisson, G., & Kelly, A. L. (2005). Effect of hydrolysis of casein by plasmin on the heat stability of milk. International Dairy Journal, 15(10), 1017–1025. https://doi.org/10.1016/j.idairyj.2004.11.001
  6. Dalabasmaz, S., Dittrich, D., Kellner, I., Drewello, T., & Pischetsrieder, M. (2019). Identification of peptides reflecting the storage of UHT milk by MALDI-TOF-MS peptide profiling. Journal of Proteomics, 207, 103444. https://doi.org/10.1016/j.jprot.2019.103444
  7. Dellafiora, L., Galaverna, G., Reverberi, M., & Dall’Asta, C. (2017). Degradation of Aflatoxins by Means of Laccases from Trametes versicolor: An In Silico Insight. Toxins, 9(1), 17. https://doi.org/10.3390/toxins9010017
  8. Du, L., Lu, W., Zhang, Y., Gao, B., & Yu, L. (2020). Detection of milk powder in liquid whole milk using hydrolyzed peptide and intact protein mass spectral fingerprints coupled with data fusion technologies. Food Science & Nutrition, 8(3), 1471–1479. https://doi.org/10.1002/fsn3.1430
  9. Fan, X., Wang, C., Cheng, M., Wei, H., Gao, X., Ma, M., Wang, X., & Li, Z. (2023). Markers and Mechanisms of Deterioration Reactions in Dairy Products. Food Engineering Reviews, 15(2), 230–241. https://doi.org/10.1007/s12393-023-09331-9
  10. Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., & O’Mahony, J. A. (2015). Heat-Induced Changes in Milk. В P. F. Fox, T. Uniacke-Lowe, P. L. H. McSweeney, & J. A. O’Mahony, Dairy Chemistry and Biochemistry (сс. 345–375). Springer International Publishing. https://doi.org/10.1007/978-3-319-14892-2_9
  11. France, T. C., O’Mahony, J. A., & Kelly, A. L. (2021). The Plasmin System in Milk and Dairy Products. В A. L. Kelly & L. B. Larsen (Ред.), Agents of Change (сс. 11–55). Springer International Publishing. https://doi.org/10.1007/978-3-030-55482-8_2
  12. Gupta, A., Mann, B., Kumar, R., & Sangwan, R. B. (2010). Identification of antioxidant peptides in cheddar cheese made with adjunct culture Lactobacillus casei ssp. casei 300. Milchwissenschaft, 65(4), 396-399.
  13. Iram, D., Sansi, M. S., Zanab, S., Vij, S., Ashutosh, & Meena, S. (2022). In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins—A molecular docking study. Journal of Food Biochemistry, 46(11). https://doi.org/10.1111/jfbc.14137
  14. Kartal, C., Kaplan Türköz, B., & Otles, S. (2020). Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. Journal of Food Measurement and Characterization, 14(4), 1865–1883. https://doi.org/10.1007/s11694-020-00434-z
  15. Kruchinin, A., & Bolshakova, E. (2022). Hybrid Strategy of Bioinformatics Modeling (in silico): Biologically Active Peptides of Milk Protein. Food Processing: Techniques and Technology, 46–57. https://doi.org/10.21603/2074-9414-2022-1-46-57
  16. Kruchinin, A. G., Bolshakova, E. I., & Barkovskaya, I. A. (2023). Bioinformatic Modeling (In Silico) of Obtaining Bioactive Peptides from the Protein Matrix of Various Types of Milk Whey. Fermentation, 9(4), 380. https://doi.org/10.3390/fermentation9040380
  17. Lu, M., & Wang, N. S. (2017). Spoilage of Milk and Dairy Products. В The Microbiological Quality of Food (сс. 151–178). Elsevier. https://doi.org/10.1016/B978-0-08-100502-6.00010-8
  18. Matéos, A., Guyard-Nicodème, M., Baglinière, F., Jardin, J., Gaucheron, F., Dary, A., Humbert, G., & Gaillard, J.-L. (2015). Proteolysis of milk proteins by AprX, an extracellular protease identified in Pseudomonas LBSA1 isolated from bulk raw milk, and implications for the stability of UHT milk. International Dairy Journal, 49, 78–88. https://doi.org/10.1016/j.idairyj.2015.04.008
  19. Meltretter, J., Schmidt, A., Humeny, A., Becker, C.-M., & Pischetsrieder, M. (2008). Analysis of the Peptide Profile of Milk and Its Changes during Thermal Treatment and Storage. Journal of Agricultural and Food Chemistry, 56(9), 2899–2906. https://doi.org/10.1021/jf073479o
  20. Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. International Journal of Molecular Sciences, 20(23), 5978. https://doi.org/10.3390/ijms20235978
  21. Muir, D. D. (2011). The stability and shelf life of milk and milk products. В Food and Beverage Stability and Shelf Life (сс. 755–778). Elsevier. https://doi.org/10.1533/9780857092540.3.755
  22. Nath, A., Eren, B. A., Zinia Zaukuu, J.-L., Koris, A., Pásztorné-Huszár, K., Szerdahelyi, E., & Kovacs, Z. (2022). Detecting the Bitterness of Milk-Protein-Derived Peptides Using an Electronic Tongue. Chemosensors, 10(6), 215. https://doi.org/10.3390/chemosensors10060215
  23. Panjaitan, F. C. A., Gomez, H. L. R., & Chang, Y.-W. (2018). In Silico Analysis of Bioactive Peptides Released from Giant Grouper (Epinephelus lanceolatus) Roe Proteins Identified by Proteomics Approach. Molecules, 23(11), 2910. https://doi.org/10.3390/molecules23112910
  24. Pooja, K., Rani, S., Kanwate, B., & Pal, G. K. (2017). Physico-chemical, Sensory and Toxicity Characteristics of Dipeptidyl Peptidase-IV Inhibitory Peptides from Rice Bran-derived Globulin Using Computational Approaches. International Journal of Peptide Research and Therapeutics, 23(4), 519–529. https://doi.org/10.1007/s10989-017-9586-4
  25. Quintieri, L., Caputo, L., Brasca, M., & Fanelli, F. (2021). Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods, 10(12), 3088. https://doi.org/10.3390/foods10123088
  26. Remenant, B., Jaffrès, E., Dousset, X., Pilet, M.-F., & Zagorec, M. (2015). Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiology, 45, 45–53. https://doi.org/10.1016/j.fm.2014.03.009
  27. Sedaghati, M., Ezzatpanah, H., Mashhadi Akbar Boojar, M., Tajabadi Ebrahimi, M., & Kobarfard, F. (2016). Isolation and identification of some antibacterial peptides in the plasmin-digest of β-casein. LWT - Food Science and Technology, 68, 217–225. https://doi.org/10.1016/j.lwt.2015.12.019
  28. Stuknytė, M., Decimo, M., Colzani, M., Silvetti, T., Brasca, M., Cattaneo, S., Aldini, G., & De Noni, I. (2016). Extracellular thermostable proteolytic activity of the milk spoilage bacterium Pseudomonas fluorescens PS19 on bovine caseins. Journal of Dairy Science, 99(6), 4188–4195. https://doi.org/10.3168/jds.2016-10894
  29. Thesbjerg, M. N., Nielsen, S. D.-H., Sundekilde, U. K., Poulsen, N. A., & Larsen, L. B. (2023). Fingerprinting of Proteases, Protease Inhibitors and Indigenous Peptides in Human Milk. Nutrients, 15(19), 4169. https://doi.org/10.3390/nu15194169
  30. Van Asselt, A. J., Sweere, A. P. J., Rollema, H. S., & De Jong, P. (2008). Extreme high-temperature treatment of milk with respect to plasmin inactivation. International Dairy Journal, 18(5), 531–538. https://doi.org/10.1016/j.idairyj.2007.11.019
  31. Verhegghe, M., De Block, J., Heyndrickx, M., Van Coillie, E., Van Poucke, C., & Duquenne, B. (2021). Application of LC‐HRMS identified marker peptides in an LC‐MS/MS method for detection and quantification of heat‐resistant proteolytic activity in raw milk. International Journal of Dairy Technology, 74(2), 286–296. https://doi.org/10.1111/1471-0307.12754
  32. Xiong, Z., He, Y., Guan, W., Lv, X., Chen, J., & Ma, D. (2024). Investigating the impact of common migration substances found in milk packaging on proteases: A multispectral and molecular docking approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 318, 124517. https://doi.org/10.1016/j.saa.2024.124517
  33. Yan, L., Langlois, B. E., O’Leary, J., & Hicks, C. L. (1985). Purification and Characterization of Four Extracellular Proteases Isolated from Raw Milk Psychrotrophs. Journal of Dairy Science, 68(6), 1323–1336. https://doi.org/10.3168/jds.S0022-0302(85)80968-1
  34. Zhang, Y., Aryee, A. N., & Simpson, B. K. (2020). Current role of in silico approaches for food enzymes. Current Opinion in Food Science, 31, 63–70. https://doi.org/10.1016/j.cofs.2019.11.003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».