Influence of Components of Palm Oil on the Character of Metabolism in the Human Body

Capa

Citar

Texto integral

Resumo

Introduction: Demand for vegetable oils is currently growing worldwide and palm oil is a significant contributor to the global supply of edible oils. Over the past few decades, there has been a growing public concern about the significant interaction between health and nutrition and palm oil (PO) in particular.Purpose: The purpose of the research is to analyze the influence of PO components on the nature of metabolism in the human body and the development of pathological conditions.Materials and Methods: The search for literature on the problem over the past 105 years was carried out in the databases of the RSCI, Google Scholar, ResearchGate, PubMed using keywords and phrases: «palm oil», «human health», «diabetes», «obesity», «cardiovascular disease», «oncology», «baby food».Results: General information about PO in the food industry is given. Despite the good quality of palm kernel oil and its beneficial properties, the food industry requires another product – light-colored PO. This implies its mandatory cleaning by chemical treatment (alkali or acid) or physical methods. Deodorized PO, low in impurities and highly bleached, is considered a high quality product for the food industry. It contains 50% saturated fatty acids (palmitic, stearic, 40% monounsaturated (oleic) and 10% polyunsaturated fatty acids (linoleic). In 2022, PO produced 76,039 million metric tons or 36% of the total amount of all oils produced in world. The use of refined PO in the food industry is growing exponentially due to its consumer properties of this product: texture, aroma and neutral taste. Different fractions of PO are used in different ways in the food industry.Palm olein is used for frying and in the production of margarines, spreads, mayonnaise, vegetable cream ice cream Palm stearin is a component of confectionery fats and is used for the production of bakery products, sweets, cakes, cheese, chips, chocolate, cookies, crackers, donuts, frozen meals, instant noodles, popcorn, salad dressings, snacks, soups.Clinical and experimental studies in recent years indicate that PO can cause the development of insulin resistance (type 2 diabetes mellitus (DM-2)) and metabolic disorders, including obesity, coronary heart disease, stroke, and various cancers. Therefore, a number of US and EU dietary guidelines aim to limit the consumption of PO in foods. However, the data of epidemiological studies conducted in various countries of the world are quite contradictory. This suggests that the assessment of the impact of PO on health must first of all take into account ethnogenetic characteristics, as well as national food traditions. Russian scientists and foreign scientists, based on the results of clinical studies, conclude that PO, as a fatty component of infant formulas, negatively affects Са2+ metabolism in the intestines of infants. Therefore, the use of PO as a component of breast milk substitutes in infant formulas should be limited and other components should be used, in particular formulas with β-palmitate or milk fat.Conclusion: General information about PO in the food industry is given. The role of PO and palmitic acid in the development of obesity and DM-2, in the development of cardiovascular diseases, and also in the occurrence of oncological diseases is shown. The possibilities of using PO in baby food are characterized. The opinion of Belarusian and Russian scientists on the impact of PO on human health is given.

Sobre autores

Valery Shilov

International Sakharov Environmental Institute of Belarusian State University

Autor responsável pela correspondência
Email: valery.shilov@gmail.com
ORCID ID: 0000-0002-2716-4182

Vladimir Litvyak

Russian Potato Research Centre

Email: besserk1974@mail.ru
ORCID ID: 0000-0002-1456-9586

Yuri Roslyakov

Kuban State Technological University

Email: lizaveta_ros@mail.ru
ORCID ID: 0000-0003-1431-4804

Bibliografia

  1. Амелюшкина, В. А., Рожкова, Т. А., & Титов, В. Н. (2013). Пальмитиновый и олеиновый варианты метаболизма жирных кислот. Экзогенный синдром резистентности к инсулину при нарушении биологической функции питания. Клиническая лабораторная диагностика, 7, 21–28.
  2. Бибик, Е. Ю., & Гайворовская, Ю. В. (2015). Влияние избыточного потребления пальмового масла на органометрические показатели тимуса в различные периоды онтогенеза. Educatio, 9(16), 48–52.
  3. Верткин, А. Л., & Прохорович, Е. А. (2013). Пальмовое масло в составе заменителей грудного молока. Обзор клинических исследований. Медицинский совет, 8, 111–113. https://doi.org/10.21518/2079–701X-2013–8-110–113
  4. Кирко, С. Р., Гуринович, В. А., Лукиенко, Е. П., Мойсеенок, А. Г., & Буко, В. У. (2017). Сравнительная характеристика жирнокислотного состава печени крыс при включении в рацион рапсового и пальмового масел. Известия НАН Беларуси. Серия медицинских наук, 1, 29–37.
  5. Литвяк, В. С., & Литвяк, В. В. (2015). Строение материи: волновая и корпускулярная теории. Минск: ИВЦ Минфина.
  6. Литвяк, В. С., & Литвяк, В. В. (2018). Волновое и корпускулярное строение материи-антиматерии: роль и значение пустоты в структуре (в 2-х ч.). Минск: ИВЦ Минфина.
  7. Медведев, О. С., & Медведева, Н. А. (2016). Современные представления о возможном влиянии пальмового масла на здоровье человека. Вопросы питания, 85(1), 5–18.
  8. Санникова, Н. Е., Стенникова, О. В., Бородулина, Т. В., & Левчук, Л. В. (2013). Жировой компонент адаптированных детских молочных смесей: Cовременное состояние и история вопроса. Русский медицинский журнал, 2, 115.
  9. Сокольский, И. (2015). Правда о пальмовом масле. Наука и жизнь, 4, 102–105.
  10. Степычева, Н. В., Васина, Н. А., & Куликова, А. А. (2018). Оценка влияния пальмового масла на развитие атеросклероза и атероматоза. Современные научные исследования и инновации, (1).
  11. Янковская, Л. В., Кежун, Л. П., Слободская, Н. С., Белоус, Ю.И., Моргунова, Е.М. (2016). Влияние пальмового масла на риск развития сердечно-сосудистых заболеваний. Журнал Гродненского государственного медицинского университета, 4, 6–11.
  12. Ajuwon, K. M., & Spurlock, M. E. (2005).β activates the NF-κB transcription factor and induces IL-6 and TNF-α expression in 3T3-L1 adipocytes. Journal of Nutrition, 135, 1841–1846. https://doi.org/10.1093/jn/135.8.1841
  13. Alarcon, P. A., Tressler, R. L., Mulvaney, A., Lam, W., & Comer, G. M. (2002). Gastrointestinal tolerance of a new infant milk formula in healthy babies: an international study conducted in 17 countries. Nutrition, 18(6), 484–489.
  14. https://doi.org/10.1016/s0899–9007(02)00752–9
  15. Alexander J., Barregard L., Bignami M., Ceccatelli S., Cottrill B., Dinovi M., Edler L., Grasl-Kraupp B., Hogstrand C., Hoogenboom L., Knutsen H. K., Nebbia C. S., Oswald I., Petersen A., Rogiers V. M., Rose M., Roudot A.-C., Schwerdtle T., Vleminckx C., Vollmer G., Wallace Н. (2016). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. European Food Safety Authority, 14(5), 4426. https://doi.org/10.2903/j.efsa.2016.4426
  16. Aranceta, J., & Perez-Rodrigo, C. (2012). Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. British Journal of Nutrition, 107, 8–22.
  17. https://doi.org/10.1017/S0007114512001444
  18. Ariyama, H., Kono, N., Matsuda, S.T., & Inoue, H. (2010). Decrease in membrane phospholipid unsaturation induces unfolded protein response. Journal of Biological Chemistry, 285, 22027–22035. https://doi.org/10.1074/jbc.M110.126870
  19. Assmann, G., Buono, P., Daniele, A., Valle, E. D., Farinaro, E., Ferns, G., Krogh, V., Kromhout, D., Masana, L., Merino, J., Misciagna, G., Panico, S., Riccardi, G., Rivellese, A. A., Rozza, F., Salvatore, F., Salvatore, V., Stranges, S., Trevisan, M., Trimarco, B., & Vetrani, C. (2014). Functional foods and cardiometabolic diseases / International Task Force for Prevention of Cardiometabolic Diseases. Nutrition, Metabolism & Cardiovascular Diseases, 24, 1272–1300. https://doi.org/10.1016/j.numecd.2014.10.010
  20. Barker, D. J. (2004). The developmental origins of adult disease. Journal of the American College of Nutrition, 23, 588–595. https://doi.org/10.1080/07315724.2004.10719428
  21. Berger, N. A. (2014) Obesity and cancer pathogenesis. Annals New York Academy of Sciences, 1311, 57–76.
  22. https://doi.org/10.1111/nyas.12416
  23. Bartsch, H., Nair, J., & Owen, R. W. (1999). Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: Emerging evidence for their role as risk modifiers. Carcinogenesis, 20, 2209–2218. https://doi.org/10.1093/carcin/20.12.2209
  24. Bester, D., Esterhuyse, A., Truter, E. J., & van Rooyen, J. (2010). Cardiovascular effects of edible oils: A comparison between four popular edible oils. Nutrition Research Reviews, 23, 334–348. https://doi.org/10.1017/S0954422410000223
  25. Bongers, M. E., de Lorijn, F., Reitsma, J. B., Groeneweg, M., Taminiau, J. A. J. M., & Benninga, M. A. (2007). The clinical effect of a new infant formula in term infants with constipation: A double–blind, randomized cross–over trial. Nutrition Journal, 11, 6–8. https://doi.org/10.1186/1475–2891-6–8
  26. Bradley, R. L., Fisher, F. F., & Maratos-Flier, E. (2008). Dietary fatty acids differentially regulate production of TNF-α and IL-10 by murine 3T3-L1 adipocytes. Obesity, 16, 938–944. https://doi.org/10.1038/oby.2008.39
  27. Bosworth, A. W., Bowditch, H. I., & Giblin, L. A. (1918). Studies of infant feeding. X: The digestion and absorption of fats. I. Calcium in its relation to the absorption of fatty acids. Archives of Pediatrics and Adolescent Medicine, 15(6), 397–407. https://doi.org/10.1001/ARCHPEDI.1918.04110240026002
  28. Brouwer, I. A., Katan, M. B., & Zock, P. L. (2004). Dietary α-linolenic acidis associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: A meta-analysis. Nutrition Journal, 134, 919–922.
  29. https://doi.org/10.1093/jn/134.4.919
  30. Byrne, M. E. O’Mahony, J. A, &. O’Callaghan, T. F. (2021). Compositional and functional considerations. for bovine-, caprine- and plant-based infant formulas. Dairy, 2(4), 695–715. https://doi.org/10.3390/dairy2040054
  31. Calder, P. C. (1999). Dietary fatty acids and the immune system. Lipids, 34, 137–140. https://doi.org/10.1007/BF02562264
  32. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget ,A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J.-F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761–1772. https://doi.org/10.2337/db06–1491
  33. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57, 1470–1481. https://doi.org/10.2337/db07–1403
  34. Carnielli, V. P., Luijendijk, I. H., Van Goudoever, J. B., Sulkers, E. J., Boerlage, A. A., Degenhart, H. J., & Sauer, P. J. (1995). Feeding premature newborn infants palmitic acid in amounts and stereoisomeric position similar to that of human milk: Effects on fat and mineral balance. American Journal of Clinical Nutrition, 61(5), 1037–1042. https://doi.org/10.1093/ajcn/61.4.1037
  35. Carnielli, V. P., Luijendijk, I. H., Van Goudoever, J. B., Sulkers, E. J., Boerlage, A. A., Degenhart, H. J., & Sauer, P. J. (1996). Structural position and amount of palmitic acid in infant formulas: Effects on fat, fatty acid, and mineral balance. Journal of Pediatric Gastroenterology & Nutrition, 23(5), 553–560.
  36. https://doi.org/10.1097/00005176–199612000-00007
  37. Chen, B. K., Seligman, B., Farquhar, J. W., &Goldhaber-Fiebert, J. D. (2011). Multi-Country analysis of palm oil consumption and cardiovascular disease mortality for countries at different stages of economic development: 1980–1997. Globalization and Health, 7, 45–54.
  38. https://doi.org/10.1186/1744–8603-7–45
  39. Cheng, L., Yu Y., Szabo, A., Wu, Y., Wang, H., Camer, D., & Huang, X.-F. (2015). Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. Journal of Nutritional Biochemistry, 26, 541–548. https://doi.org/10.1016/j.jnutbio.2014.12.011
  40. Clandinin, M. T., Cook, S. L., Konrad, S. D., & French, M. A. (2000). The effect of palmitic acid on lipoprotein cholesterol levels. International Journal of Food Sciences and Nutrition, 51, 61–S71.
  41. Clandinin, M. T., Cook, S. L., Konrad, S. D., Goh, Y. K., & French, M. A. (1999). The effect of palmitic acid on lipoprotein cholesterol levels and endogenous cholesterol synthesis in hyperlipidemic subjects. Lipids, 34, 121–124.
  42. https://doi.org/10.1007/BF02562257
  43. Clarke, R., Frost, C., Collins, R., Appleby, P., Peto, R. (1997). Dietary lipids and blood cholesterol: Quantitative meta-analysis of metabolic ward studies. BMJ, 314, 112–117. https://doi.org/10.1136/bmj.314.7074.112
  44. Crowe, F. L., Allen, N. E., Appleby, P. N., Overvad, K., Aardestrup, I. V., Johnsen, N. F., Tjønneland, A., Linseisen, J., Kaaks, R., Boeing, H., Kröger, J., Trichopoulou, A., Zavitsanou, A., Trichopoulos, D., Sacerdote, C., Palli, D., Tumino, R., Agnoli, C., Kiemeney, L. A., Bueno-de-Mesquita, H. B., Chirlaque, María-Dolores, Ardanaz, E., Larrañaga, N., Quirós, J. R., Sánchez, Maria-José, González, C. A., Stattin, P., Hallmans, G., Bingham, S., Khaw, Kay-Tee, Rinaldi, S., Slimani, N., Jenab, M., Riboli, E., & Key, T. J. (2008). Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. American Journal of Clinical Nutrition, 88, 1353–1363. https://doi.org/10.3945/ajcn.2008.26369
  45. Čmolík, J., Pokorný, J. (2000). Physical refining of edible oils. European Journal of Lipid Science and Technology, 102, 472–486. https://doi.org/10.1002/1438–9312(200008)102:73.0.CO;2-Z
  46. Daniele, A., Cammarata, R., Pasanisi, F., Finelli, C., Salvatori, G., Calcagno, G., Bracale, R., Labruna, G., Nardelli, C., Buono, P., Sacchetti, L., Contaldo, F., & Oriani, G. (2008). Molecular analysis of the adiponectin gene in severely obese patients from southern Italy. Annals of Nutrition and Metabolism, 53, 155–161. https://doi.org/10.1159/000172976
  47. De Rosa, A., Monaco, M. L., Capasso, M., Forestieri, P., Pilone, V., Nardelli, C., Buono, P., & Daniele, A. (2013). Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects. European Journal of Endocrinology, 169, 37–43. https://doi.org/10.1530/EJE-12–1039
  48. De Wit, N., Derrien, M., Bosch-Vermeulen, H., Oosterink, E., Keshtkar, S., Duval, C., Van den Bosch, J. V., Kleerebezem, M., Müller, M., & Van der Meer, R. (2012). Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303, 589–599. https://doi.org/10.1152/ajpgi.00488.2011
  49. Diakogiannaki, E., Welters, H. J., & Morgan, N. G. (2008). Differential regulation of the endoplasmic reticulum stress response in pancreatic beta-cells exposed to long-chain saturated and monounsaturated fatty acids. Journal of Endocrinology, 197, 553–563. https://doi.org/10.1677/JOE-08–0041
  50. Dixon, J. B. (2010). The effect of obesity on health outcomes. Molecular and Cellular Endocrinology, 316, 104–108. https://doi.org/10.1016/j.mce.2009.07.008
  51. Dunford, N. T. (2012). Advancements in oil and oilseed processing. In Food and Industrial Bioproducts and Bioprocessing (pp. 115–143). John Wiley and Sons Inc. https://doi.org/10.1002/9781119946083.ch4
  52. Edem, D. O. (2002). Palm Oil: Biochemical, physiological, nutritional, hematological, and toxicological aspects: A review. Plant Foods for Human Nutrition, 57, 319–341. https://doi.org/10.1023/a:1021828132707
  53. Escrich, E., Solanas, M., Moral, R., Costa, I., & Grau, L. (2006). Are the olive oil and other dietary lipids related to cancer? Experimental evidence. Clinical and Translational Oncology, 8, 868–883.
  54. https://doi.org/10.1007/s12094–006-0150–5
  55. Escrich, E., Solanas, M., Moral, R., &bEscrich, R. (2011). Modulatory effects and molecular mechanisms of olive oil and other dietary lipids in breast cancer. Current Pharmaceutical Design, 17, 813–830. https://doi.org/10.2174/138161211795428902
  56. Exley, M.A., Hand, L., O’Shea, D., & Lynch, L. (2014). Interplay between the immune system and adipose tissue in obesity. Journal of Endocrinology, 223, 41–48. https://doi.org/10.1530/JOE-13–0516
  57. Fattore, E., Bosetti, C., Brighenti, F., Agostoni, C., & Fattore, G. (2014). Palm oil and blood lipid-related markers of cardiovascular disease: A systematic review and meta-analysis of dietary intervention trials. American Journal of Clinical Nutrition, 99, 1331–1350. https://doi.org/10.3945/ajcn.113.081190
  58. Fattore, E., & Fanelli, R. (2013). Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity. International Journal of Food Sciences and Nutrition, 64, 648–659. https://doi.org/10.3109/09637486.2013.768213
  59. Favé, G., Coste, T. C., & Armand, M. (2004). Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability. Molecular and Cellular Biology, 50, 815–831.
  60. Fomon, S. J. (1975). What are infants fed in the United States? Pediatrics, 56, 3, 350–354.
  61. Forouhi, N. G., Koulman, A., Sharp, S. J., Imamura, F., Kröger, J., Schulze, M. B., Crowe, F. L., Huerta, J. M., Guevara, M., Beulens, J. W. J., Van Woudenbergh, G. J., Wang, L., Summerhill, K., Griffin, J. L., Feskens, E. J. M., Amiano, P., Boeing, H., Clavel-Chapelon, F., Dartois, L., Fagherazzi, G., Franks, P. W., Gonzalez, C., Jakobsen, M. U., Kaaks, R., Key, T. J., Khaw, K. T., Kühn, T., Mattiello, A., Nilsson, P. M., Overvad, K., Pala, V., Palli, D., Quirós, J. R., Rolandsson, O., Roswall, N., Sacerdote, C., Sánchez, M. J., Slimani, N., Spijkerman, A. M. W., Tjonneland, A., Tormo, M. J., Tumino, R., Van der, A D. L., Van der Schouw, Y. T., Langenberg, C., Riboli, E., & Wareham, N. J. (2014). Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes & Endocrinology, 2, 810–818.
  62. https://doi.org/10.1016/S2213–8587(14)70146–9
  63. Franchi, L., Eigenbrod, T., Munoz-Planillo, R., & Nunez, G. (2009). The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology, 10, 241–247.
  64. https://doi.org/10.1038/ni.1703
  65. Gallagher, E. J., & LeRoith, D. (2015). Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiological Reviews, 95, 727–748.
  66. https://doi.org/10.1152/physrev.00030.2014
  67. Gee, P. T. (2007). Analytical characteristics of crude and refined palm oil and fractions. European Journal of Lipid Science and Technology, 109, 373–379.
  68. https://doi.org/10.1002/ejlt.200600264
  69. Ge, G., Wu, J., & Lin, Q. (2001). Effect of membrane fluidity on tyrosine kinase activity of reconstituted epidermal growth factor receptor. Biochemical and Biophysical Research Communications, 282, 511–514.
  70. https://doi.org/10.1006/bbrc.2001.4600
  71. Ghoshal, S., Witta, J., Zhong, J., De Villiers, W., & Eckhardt, E. (2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. Journal of Lipid Research, 50, 90–97. https://doi.org/10.1194/jlr.M800156-JLR200
  72. Gunstone, F. D. (2011). Vegetable oils in food technology: Composition, properties and uses (2nd ed., pp. 25–153). Blackwell Publishing Ltd.
  73. Hardy, S., Langelier, Y., & Prentki, M. (2000). Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Research, 60, 6353–6358.
  74. Henson, I. E. (2012). A brief history of the palm oil. In Palm oil: Production, processing, characterization and uses. AOCS Press.
  75. Hodge, A. M., Williamson, E. J., Bassett, J. K., MacInnis, R. J., Giles, G. G., & English, D. R. (2015). Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. International Journal of Cancer. https://doi.org/10.1002/ijc.29479
  76. Holt, E.L.L., Courtney, A.M., & Fales, H.L. (1920). Calcium metabolism of infants and young children and the relation of calcium to fat excretion in the stools. Archives of Pediatrics and Adolescent Medicine, 19(3), 201–222.
  77. Holt, E. L. L., Courtney, A. M., & Fales, H. L. (1918). Is the amount of calcium usually given in dilutions of cow’s milk injurious to infants?: A reply to the article on «Calcium in its Relation to the Absorption of Fatty Acids», by Bosworth, Bowditch and Giblin. American Journal of Diseases of Children; Archives of Pediatrics and Adolescent Medicine, 16(1), 52–56.
  78. Holt, Jr. M. D. L. E., Tidwell, Ph. D. H. C., Kirk, M. D. C. M., Cross, D. M., & Neale, S. (1935). Studies in fat metabolism: I. Fat absorption in normal infants. Journal of Pediatrics, 6(4), 427–480.
  79. https://doi.org/10.1016/S0022–3476(35)80034–6
  80. Ishii, M., Maeda, A., Tani, S., & Akagawa, M. (2015). Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Archives of Biochemistry and Biophysics, 566, 26–35. https://doi.org/10.1016/j.abb.2014.12.009
  81. Jackson, M. D., Walker, S. P., Simpson-Smith, C. M., Lindsay, C. M., Smith, G., McFarlane-Anderson, N., Bennett, F. I., Coard, K. C. M., Aiken, W. D., Tulloch, T., Paul, T. J., & Wan, R. L. (2012). Associations of whole-blood fatty acids and dietary intakes with prostate cancer in Jamaica. Cancer Causes & Control, 23, 23–33. https://doi.org/10.1007/s10552–011-9850–4
  82. Jager, J., Gremeaux, T., Cormont, M., Marchand-Brustel, Y. L., & Tanti, J.-F. (2007). Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 148, 241–251. https://doi.org/10.1210/en.2006–0692
  83. Jensen, R. G. (1996). The lipids in human milk. Progress in Lipid Research, 35, 53–92. https://doi.org/10.1016/0163–7827(95)00010–0
  84. Jiao, P., Ma, J., Feng, B., Zhang, H., Diehl, J. A., Chin, Y. E., Yan, W., & Xu, H. (2011). FFA-induced adipocyte inflammation and insulin resistance: Involvement of ER stress and IKKβ pathways. Obesity, 19, 483–491.
  85. https://doi.org/10.1038/oby.2010.200
  86. Karupaiah, T., & Sundram, K. (2007). Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutrition & Metabolism, 4, 16–32.
  87. https://doi.org/10.1186/1743–7075-4–16
  88. Kennedy, K., Fewtrell, M. S., Morley, R., Abbott, R., Quinlan, P. T., Wells, J. C., Bindels, J. G., & Lucas, A. (1999). Double–blind, randomized trial of a synthetic triacylglycerol in formula–fed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization. American Journal of Clinical Nutrition, 70(5), 920–927. https://doi.org/10.1093/ajcn/70.5.920
  89. Keys, A., Menotti, A., Aravanis, C., Blackburn, H., Djordevic, B. S., Buzina, R., Dontas, A. S., Fidanza, F., Karvonen, M. J., & Kimura, N. (1984). The seven countries study: 2289 deaths in 15 years. Preventive Medicine, 13, 141–154. https://doi.org/10.1016/0091–7435(84)90047–1
  90. Keys, A., Menotti, A., Karvonen, M. J., Aravanis, C., Blackburn, H., Buzina, R., Djordjevic, B. S., Dontas, A. S., Fidanza, F., & Keys, M. H. (1986). The diet and 15-year death rate in the seven countries study. American Journal of Epidemiology, 124, 903–915. https://doi.org/10.1093/oxfordjournals.aje.a114480
  91. Kharroubi, A. T., & Darwish, H. M. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6, 850–867. https://doi.org/10.4239/wjd.v6.i6.850
  92. Kochikuzhyil, B. M., Devi, K., & Fattepur, S. R. (2010). Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats. Indian Journal of Pharmacology, 42, 142–145. https://doi.org/10.4103/0253–7613.66835
  93. Koletzko, B., Baker, S., Cleghorn, G., Neto, U. F., Gopalan, S., Hernell, O., Hock, Q. S., Jirapinyo, P., Lonnerdal, B., Pencharz, P., Pzyrembel, H., Ramirez-Mayans, J., Shamir, R., Turck, D., Yamashiro, Y., & Zong-Yi, D. (2005). Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. Journal of Pediatric Gastroenterology and Nutrition, 41(5), 584–599. https://doi.org/10.1097/01.mpg.0000187817.38836.42
  94. Kolonel, L. N., Nomura, A. M., & Cooney, R. V. (1999). Dietary fat and prostate cancer: Current status. Journal of the National Cancer Institute, 91, 414–428. https://doi.org/10.1093/jnci/91.5.414
  95. Koo, W. W., Hammami, M., Margeson, D. P., Nwaesei, C., Montalto, M. B., & Lasekan, J. B. (2003). Reduced bone mineralization in infants fed palm olein–containing formula: A randomized, double–blinded, prospective trial. Pediatrics, 111(5), 1017–1023. https://doi.org/10.1542/peds.111.5.1017
  96. Koo, W. W. K., Hockman, E. M., & Dow, M. (2006). Palm olein in the fat blend of infant formulas: Effect on the intestinal absorption of calcium and fat, and bone mineralization. Journal of the American College of Nutrition, 2, 117–122.
  97. https://doi.org/10.1080/07315724.2006.10719521
  98. Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404, 635–643. https://doi.org/10.1038/35007508
  99. Kritchevsky, D., & Sundram K. (2002). Palm oil in human nutrition: Recent advances. Asia Pacific Journal of Clinical Nutrition, 11(7), 393. https://doi.org/10.1046/j.1440–6047.2001.00401.x
  100. Kritchevsky, D., Tepper, S. A., Chen, S. C., Meijer, G. W., & Krauss, R. M. (2000). Cholesterol vehicle in experimental atherosclerosis. Effects of specific synthetic triglycerides. Lipids, 35, 621–625. https://doi.org/10.1007/s11745–000-0565–3
  101. Kritchevsky, D., Tepper, S. A., Czarnecki, S. K., & Sundram, K. (2002). Red palm oil in experimental atherosclerosis. Asia Pacific Journal of Clinical Nutrition, 11, 433–437. https://doi.org/10.1046/j.1440–6047.11.s.7.5.x
  102. Kritchevsky, D., Tepper, S. A., & Kuksis, A. (1998). Cholesterol vehicle in experimental atherosclerosis. Native and randomized lard and tallow. Journal of Nutritional Biochemistry, 9, 582–585.
  103. Kritchevsky, D., Tepper, S. A., & Wright, S. (1998). Cholesterol vehicle in experimental atherosclerosis. Cottonseed oil and randomized cottonseed oil. Nutrition Reviews, 18, 259–264.
  104. Kromhout, D., Keys, A., Aravanis, C., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., Nedeljkovic, S., & Pekkarinen M. (1989). Food consumption patterns in the 1960s in seven countries. American Journal of Clinical Nutrition, 49, 889–894. https://doi.org/10.1093/ajcn/49.5.889
  105. Kromhout, D., Menotti, A., Bloemberg, B., Aravanis, C., Blackburn, H., Buzina, R., Dontas, A. S., Fidanza, F., Giampaoli, S., & Jansen, A. (1995). Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: The seven countries study. Preventive Medicine, 24, 308–315. https://doi.org/10.1006/pmed.1995.1049
  106. Kronenberg, F., Kronenberg, M. F., Kiechl, S., Trenkwalder, E., Santer, P., Oberhollenzer, F., Egger, G., Utermann, G., & Willeit, J. (1999). Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis: Prospective results from the Bruneck study. Circulation, 100, 1154–1160.
  107. https://doi.org/10.1161/01.cir.100.11.1154
  108. Kurahashi, N., Inoue, M., Iwasaki, M., Sasazuki, S., & Tsugane, A.S. (2008). Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiology, Biomarkers & Prevention, 17, 930–937. https://doi.org/10.1158/1055–9965.EPI-07–2681
  109. Kuriki, K., Wakai, K., Hirose, K., Matsuo, K., Ito, H., Suzuki, T., Saito, T., Kanemitsu, Y., Hirai, T., Kato, T., Tatematsu, M., & Tajima, K. (2006). Risk of colorectal cancer is linked to erythrocyte compositions of fatty acids as biomarkers for dietary intakes of fish, fat, and fatty acids. Cancer Epidemiology, Biomarkers & Prevention, 15, 1791–1798.
  110. https://doi.org/10.1158/1055–9965.EPI-06–0180
  111. Laugerette, F., Furet, J. P., Debard, C., Daira, P., Loizon, E., Géloën, A., Soulage, C. O., Simonet, C., Lefils-Lacourtablaise, J., Bernoud-Hubac, N., Bodennec, J., Peretti, N., Vidal, H., & Michalski, M.-C. (2012). Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. American Journal of Physiology — Endocrinology and Metabolism, 302, 374–386.
  112. https://doi.org/10.1152/ajpendo.00314.2011
  113. Laugerette, F., Vors, C., Geloen, A., Chauvin, M.-A., Soulage, C., Lambert-Porcheron, S., Peretti, N., Alligier, M., Burcelin, R., Laville, M., Vidal, H., & Michalsk, M.-C. (2011). Emulsified lipids increase endotoxemia: Possible role in early postprandial low-grade inflammation. Journal of Nutritional Biochemistry, 22, 53–59. https://doi.org/10.1016/j.jnutbio.2009.11.011
  114. Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070–11075. https://doi.org/10.1073/pnas.0504978102
  115. Litmanovitz, I., Davidson, K., & Eliakim, A. (2011). The effects of infant formula beta–palmitate structural position on bone speed of sound, anthropometrics and infantile colic: A double–blind, randomized control trial. ESPGHAN Annual Meeting, May 25–28, 2011, Sorrento, Italy. Journal of Pediatric Gastroenterology and Nutrition, 52(1), 215.
  116. Lof, M., Sandin, S., Lagiou, P., Hilakivi-Clarke, L., Trichopoulos, D., Adami, H.-O., & Weiderpass, E. (2007). Dietary fat and breast cancer risk in the Swedish women’s lifestyle and health cohort. British Journal of Cancer, 97, 1570–1576.
  117. https://doi.org/10.1038/sj.bjc.6604033
  118. López-López, A., Castellote-Bargalló, A. I., Campoy-Folgoso, C., Rivero-Urgël, M., Tormo-Carnicé, R., Infante-Pina, D., & López-Sabater, M. C. (2001). The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Human Development, 65, 83–94. https://doi.org/10.1016/s0378–3782(01)00210–9
  119. Lucas, A., Quinlan, P., Abrams, S., Ryan, S., Meah, S., & Lucas, P. J. (1997). Randomised controlled trial of a synthetic triglyceride milk formula for preterm infants. Archives of Disease in Childhood — Fetal and Neonatal Edition, 77(3), 178–84. https://doi.org/10.1136/fn.77.3.f178
  120. Magri, T.P., Fernandes, F.S., Souza, A.S., Langhi, L.G.P., Barboza, T., Misan, V., Mucci, D.B., Santos, R.M., Nunes, T.F., Souza, S.A.L., Coelho, V.M., & Do Carmo, M.G.T. (2015). Interesterified fat or palmoil as substitutes for partially hydrogenated fat in maternal diet can predispose obesity in adult male offspring. Clinical Nutrition, 24, 904–910.
  121. https://doi.org/10.1016/j.clnu.2014.09.014
  122. Marzuki, A., Arshad, F., Razak, T. A., & Jaarin, K. (1991). Influence of dietary fat on plasma lipid profiles of Malaysian adolescents. American Journal of Clinical Nutrition, 53(4), 1010–1014. https://doi.org/10.1093/ajcn/53.4.1010S
  123. Matsuoka, T., Adair, J. E., Lih, F. B., His, L. C., Rubino, M., Eling, T. E., Tomer, K. B., Yashiro, M., Hirakawa, K., Olden, K., & Roberts, J. D. (2010). Elevated dietary linoleic acid increases gastric carcinoma cell invasion and metastasis in mice. British Journal of Cancer, 103, 1182–1191.
  124. https://doi.org/10.1038/sj.bjc.6605881
  125. May, C. Y., & Nesaretnam, K. (2014). Research advancements in palm oil nutrition. European Journal of Lipid Science and Technology, 116, 1301–1315.
  126. https://doi.org/10.1002/ejlt.201400076
  127. Mazzocchi, А., De Cosmi, V., & Milani, G. P. (2022). Agostoni health and sustainable nutritional choices from childhood: Dietary pattern and social models. Annals of Nutrition and Metabolism, 78(2), 21–27. https://doi.org/10.1159/000524860
  128. Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm Oil: Processing, characterization and utilization in the food industry — A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003
  129. Mehrotra, V., Sehgal, S. K., & Bangale, N. R. (2019). Fat structure and composition in human milk and infant formulas: Implications in infant health. Clinical Epidemiology and Global Health, 7(2), 153–159 https://doi.org/10.1016/j.cegh.2018.03.005
  130. Menotti, A., Keys, A., Aravanis, C., Blackburn, H., Dontas, A., Fidanza, F., Karvonen, M. J., Kromhout, D., Nedeljkovic, S., & Nissinen, A. (1989). Seven countries study. First 20-year mortality data in 12 cohorts of six countries. Annals of Medicine, 21, 175–179. https://doi.org/10.3109/07853898909149929
  131. Mensink, R. P., & Katan, M. B. (1992). Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arteriosclerosis, Thrombosis, and Vascular Biology, 12, 911–919. https://doi.org/10.1161/01.atv.12.8.911
  132. Mensink, R. P., Zock, P. L., Kester, A. D., & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. American Journal of Clinical Nutrition, 77, 1146–1155.
  133. https://doi.org/10.1093/ajcn/77.5.1146
  134. Mordier, S., & Iynedjian, P. B. (2007). Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochemical and Biophysical Research Communications, 362, 206–211. https://doi.org/10.1016/j.bbrc.2007.08.004
  135. Musa, C. V., Mancini, A., Alfieri, A., Labruna, G., Valerio, G., Franzese, A., Pasanisi, F., Licenziati, M. R., Sacchetti, L., & Buono, P. (2012). Four novel UCP3 gene variants associated with childhood obesity: Effect on fatty acid oxidation and on prevention of triglyceride storage. International Journal of Obesity, 36, 207–217. https://doi.org/10.1038/ijo.2011.81
  136. Musso, G., Gambino, R., & Cassader, M. (2011). Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annual Review of Medicine, 62, 361–380. https://doi.org/10.1146/annurev-med-012510–175505
  137. Nelson, S. E., Frantz, J. A., & Ziegler, E. E. (1998). Absorption of fat and calcium by infants fed a milk–based formula containing palm olein. Journal of the American College of Nutrition, 17(4), 327–332. https://doi.org/10.1080/07315724.1998.10718770
  138. Nelson, S. E., Rogers, R. R., Frantz, J. A., & Ziegler, E. E. (1996). Palm olein in infant formula: absorption of fat and minerals by normal infants. American Journal of Clinical Nutrition, 64(3), 291–296. https://doi.org/10.1093/ajcn/64.3.291
  139. Obibuzor, J. U., Okogbenin, E. A., & Abigor, R. D. (2012). Oil recovery from palm fruits and palm kernel. In Palm oil: Production, processing, characterization and uses (pp. 299–328). AOCS Press. https://doi.org/10.1016/B978–0-9818936–9-3.50014–9
  140. Ong, A. S., & Goh, S. H. (2002). Palm oil: A healthful and cost-effective dietary component. Food and Nutrition Bulletin, 23, 11–22. https://doi.org/10.1177/156482650202300102
  141. Odia, O. J., Ofori, S., & Maduka, O. (2015). Palm oil and the heart: A review. World Journal of Cardiology, 26, 144–149.
  142. https://doi.org/10.4330/wjc.v7.i3.144
  143. Padial-Jaudenes, M., Castanys-Munoz, E., Ramirez, M., & Lasekan, J. (2020). Physiological impact of palm olein or palm oil in infant formulas: A review of clinical evidence. Nutrients, 12(12), 3676. https://doi.org/10.3390/nu12123676
  144. Raven, A. M., & Robinson, K. L. (1960). Studies of the nutrition of the young calf. British Journal of Nutrition, 14(2), 135–146.
  145. Renaud, S. C., Ruf, J. C., & Petithory, D. (1995). The positional distribution of fatty acids in palm oil and lard influences their biologic effects in rats. Journal of Nutrition, 125, 229–237. https://doi.org/10.1093/jn/125.2.229
  146. Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). https://doi.org/10.2903/j.efsa.2016.4426
  147. Rosqvist, F., Iggman, D., Kullberg, J., Cedernaes, J., Johansson, H.-E., Larsson, A., Johansson, L., Ahlström, H., Arner, P., Dahlman, I., & Risérus, U. (2014). Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes, 63, 2356–2368.
  148. https://doi.org/10.2337/db13–1622
  149. Rossini, A., Zanobbio, L., Sfondrini, L., Cavalleri, A., Secreto, G., Morelli, D., Palazzo, M., Sommariva, M., Tagliabue, E., Rumio, C., & Balsari, A. (2013). Influence of fatty acid-free diet on mammary tumor development and growth rate in HER-2/Neu transgenic mice. Journal of Cellular Physiology, 228, 242–249. https://doi.org/10.1002/jcp.24130
  150. Saadatian-Elahi, M., Norat, T., Goudable, J., & Riboli, E. (2004). Biomarkers of dietary fatty acid intake and the risk of breast cancer: A meta-analysis. International Journal of Cancer, 111, 584–591. https://doi.org/10.1002/ijc.20284
  151. Sambanthamurthi, R., Sundram, K., & Tan, Y. A. (2000). Chemistry and biochemistry of palm oil. Progress in Lipid Research, 39, 507–558. https://doi.org/10.1016/s0163–7827(00)00015–1
  152. Savarese, M., Castellini, G., Paleologo, M., & Graffigna, G. (2022). Determinants of palm oil consumption in food products: A systematic review. Journal of Functional Foods, 96, 105207. https://doi.org/10.1016/j.jff.2022.105207
  153. Sczaniecka, A. K., Brasky, T. M., Lampe, J. W., Patterson, R. E., & White, E. (2012). Dietary intake of specific fatty acids and breast cancer risk among postmenopausal women in the VITAL cohort. Nutrition and Cancer, 64, 1131–1142. https://doi.org/10.1080/01635581.2012.718033
  154. Sen, C. K., Khanna, S., & Roy, S. (2007). Tocotrienols in health and disease: The other half of the natural vitamin E family. Molecular Aspects of Medicine, 28, 692–728. https://doi.org/10.1016/j.mam.2007.03.001
  155. Shannon, J., King, I. B., Moshofsky, R., Lampe, J. W., Gao, D. L., Ray, R. M., & Thomas, D. B. (2007). Erythrocyte fatty acids and breast cancer risk: A case-control study in Shanghai, China. American Journal of Clinical Nutrition, 85, 1090–1097. https://doi.org/10.1093/ajcn/85.4.1090
  156. Shen, X. J., Zhou, J. D., Dong, J. Y., Ding, W. Q., & Wu, J. C. (2012). Dietary intake of n-3 fatty acids and colorectal cancer risk: A meta-analysis of data from 489,000 individuals. British Journal of Nutrition, 108, 1550–1556.
  157. https://doi.org/10.1017/S0007114512003546
  158. Sieri, S., Krogh, V., Ferrari, P., Berrino, F., Pala, V., Thiébaut, A. C. M., Tjønneland, A., Olsen, A., Overvad, K., Jakobsen, M. U., Clavel-Chapelon, F., Chajes, V., Boutron-Ruault, Marie-Christine, Kaaks, R., Linseisen, J., Boeing, H., Nöthlings, U., Trichopoulou, A., Naska, A., Lagiou, P., Panico, S., Palli, D., Vineis, P., Tumino, R., Lund, E., Kumle, M., Skeie, G., González, C. A., Ardanaz, E., Amiano, P., Tormo, M.J., Martínez-García, C., Quirós, J. R., Berglund, G., Gullberg, B., Hallmans, G., Lenner, P., Bueno-de-Mesquita, H.B., Van Duijnhoven, F. J. B., Peeters, P. H. M., Van Gils, C. H., Key, T. J., Crowe, F. L., Bingham, S., Khaw, K. T., Rinaldi, S., Slimani, N., Jenab, M., Norat, T., & Riboli, E. (2008). Dietary fat and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition. American Journal of Clinical Nutrition, 88, 1304–1312. https://doi.org/10.3945/ajcn.2008.26090
  159. Silva, A. P., Guimaraes, D. E., Mizurini, D. M., Maia, I. C., Ortiz-Costa, S., Sardinha, F. L., & Do Carmo, M. G. T. (2006). Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats. Lipids, 41, 535–541.
  160. https://doi.org/10.1007/s11745–006-5002–0
  161. Simon-Szabó, L., Kokas, M., Mandl, J., Kéri, G., & Csala, M. (2014). Metformin attenuates palmitate-induced endoplasmic reticulum stress, Serine Phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PLoS ONE, 9, 97868–97875. https://doi.org/10.1371/journal.pone.0097868
  162. Soto-Guzman, A., Navarro-Tito, N., Castro-Sanchez, L., Martinez-Orozco, R., & Salazar, E. P. (2010). Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clinical & Experimental Metastasis, 27, 505–515.
  163. https://doi.org/10.1007/s10585–010-9340–1
  164. Souganidis, E., Laillou, A., Leyvraz, M., & Moench-Pfanner, R. (2013). A comparison of retinyl palmitate and red Palm Oil β-carotene as strategies to address Vitamin A deficiency. Nutrients, 15, 3257–3271. https://doi.org/10.3390/nu5083257
  165. Specker, B. L., Beck, A., Kalkwarf, H., & Ho, M. (1997). Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics, 99(6), 12. https://doi.org/10.1542/peds.99.6.e12
  166. Stoll, L.L., Denning, G. M., Li, W. G., Rice, J. B., Harrelson, A. L., Romig, S. A., Gunnlaugsson, S. T., Miller, Jr. F. J., & Weintraub, N. L. (2004). Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: Expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. Journal of Immunology, 173, 1336–1343.
  167. https://doi.org/10.4049/jimmunol.173.2.1336
  168. Storlien, L. H., Higgins, J. A., Thomas, T. C., Brown, M. A., Wang, H. Q., Huang, X. F., & Else, P. L. (2000). Diet composition and insulin action in animal models. British Journal of Nutrition, 83, 85–90. https://doi.org/10.1017/s0007114500001008
  169. Sundram, K., Hayes, K. C., & Siru, O. H. (1994). Dietary palmitic acid results in lower serum cholesterol than does a lauric-myristic acid combination in normolipemic humans. American Journal of Clinical Nutrition, 59, 841–846.
  170. https://doi.org/10.1093/ajcn/59.4.841
  171. Sundram, K., Ismail, A., Hayes, K. C., Jeyamalar, R., & Pathmanathan, R. (1997). Trans (elaidic) fatty acids adversely affect the lipoprotein profile relative to specific saturated fatty acids in humans. Journal of Nutrition, 127, 514–520.
  172. https://doi.org/10.1093/jn/127.3.514S
  173. Sundram, K., Sambanthamurthi, R., & Tan, Y. A. (2003). Palm fruit chemistry and nutrition. Asia Pacific Journal of Clinical Nutrition, 12, 355–362.
  174. Theodoratou, E., McNeill, G., Cetnarskyj, R., Farrington, S. M., Tenesa, A., Barnetson, R., Porteous, M., Dunlop, M., & Campbell, H. (2007). Dietary fatty acids and colorectal cancer: A case-control study. American Journal of Epidemiology, 166, 181–195. https://doi.org/10.1093/aje/kwm063
  175. Thiebaut, A. C., Kipnis, V., Chang, S. C., Subar, A. F., Thompson, F. E., Rosenberg, P. S., Hollenbeck, A. R., Leitzmann, M., & Schatzkin, A. (2007). Dietary fat and postmenopausal invasive breast cancer in the national institutes of health-AARP diet and health study cohort. Journal of the National Cancer Institute, 99, 451–462. https://doi.org/10.1093/jnci/djk094
  176. Thompson, N. M., Norman, A. M., Donkin, S. S., Shankar, R. R., Vickers, M. H., Miles, J. L., & Breier, B. H. (2007). Prenatal and postnatal pathways to obesity: Different underlying mechanisms, different metabolic outcomes. Endocrinology, 148, 2345–2354. https://doi.org/10.1210/en.2006–1641
  177. Ting, J. P., Willingham, S. B., & Bergstralh, D. T. (2008). NLRs at the intersection of cell death and immunity. Nature Reviews Immunology, 8, 372–379. https://doi.org/10.1038/nri2296
  178. Truswell, A. S. (2000). Comparing palmolein with different predominantly monounsaturated oils: Effect on plasma lipids. International Journal of Food Sciences and Nutrition, 51, 73–77.
  179. Urugo, M. M., Teka, T. A., Teshome, P. G., & Tringo, T. T. (2021). Palm oil processing and controversies over its health effect: Overview of positive and negative consequences. Journal of Oleo Science, 70(12), 1693–1706.
  180. https://doi.org/10.5650/jos.ess21160
  181. Utarwuthipong, T., Komindr, S., Pakpeankitvatana, V., Songchitsomboon, S., & Thongmuang, N. (2009). Small dense low-density lipoprotein concentration and oxidative susceptibility changes after consumption of soybean oil, rice bran oil, palm oil and mixed rice bran/palm oil in hypercholesterolaemic women. Journal of International Medical Research, 37, 96–104.
  182. https://doi.org/10.1177/147323000903700111
  183. Van Amelsvoort, J. M., Van der Beek, A., & Stam, J. J. (1986). Effects of the type of dietary fatty acid on the insulin receptor function in rat epididymal fat cells. Annals of Nutrition and Metabolism, 30, 273–280. https://doi.org/10.1159/000177204
  184. Vega-López, S., Ausman, L. M., Jalbert, S. M., Erkkilä, A. T., & Lichtenstein, A. H. (2006). Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. American Journal of Clinical Nutrition, 84, 54–62. https://doi.org/10.1093/ajcn/84.1.54
  185. Verschuren, W. M., Jacobs, D. R., Bloemberg, B. P., Kromhout, D., Menotti, A., Aravanis, C., Blackburn, H., Buzina, R., Dontas, A. S., & Fidanza, F. (1995). Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. Journal of the American Medical Association, 274, 131–136.
  186. Walldius, G., & Jungner, I. (2004). Apolipoprotein B and apolipoprotein A-I: Risk indicators of coronary heart disease and targets for lipid-modifying therapy. Journal of Internal Medicine, 255, 188–205.
  187. https://doi.org/10.1046/j.1365–2796.2003.01276.x
  188. Walldius, G., Jungner, I., Holme, I., Aastveit, A. H., Kolar, W., & Steiner, E. (2001). High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): A prospective study. Lancet, 358, 2026–2033. https://doi.org/10.1016/S0140–6736(01)07098–2
  189. Wang, X., Cheng, M., Zhao, M., Ge, A., Guo, F., Zhang, M., Yang, Y., Liu, L., & Yang, N. (2013). Differential effects of high-fat-diet rich in lard oil or soybean oil on osteopontin expression and inflammation of adipose tissue in diet-induced obese rats. European Journal of Clinical Nutrition, 52, 1181–1189.
  190. https://doi.org/10.1007/s00394–012-0428-z
  191. Wei, Y., Wang, D., Topczewski, F., & Passagliotti, M.J. (2006). Saturated fatty acids induce endoplasmic reticulum stress and apoptosis indepently of ceramide in liver cells. American Journal of Physiology — Endocrinology and Metabolism, 291, 275–281. https://doi.org/10.1152/ajpendo.00644.2005
  192. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T.-H., Brickey, W. J., & Ting, J. P.-Y. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology, 12, 408–415.
  193. https://doi.org/10.1038/ni.2022
  194. Widdowson, E. M. (1965). Absorption and excretion of fat, nitrogen, and minerals from «filled» milks by babies one week old. Lancet, 2(7422), 1099–1105. https://doi.org/10.1016/s0140–6736(65)90065–6
  195. Wolk, A., Bergstrom, R., Hunter, D., Willett, W., Ljung, H., Holmberg, L., Bergkvist, L., Bruce, A., & Adami, H. O. (1998). A prospective study of association of monounsaturated fat and other types of fat with risk of breast cancer. Archives of Internal Medicine, 158, 41–45. https://doi.org/10.1001/archinte.158.1.41
  196. Yang, M., Wei, D., Mo, C., Zhang, J., Wang, X., Han, X., Wang, Z., & Xiao, H. (2013). Saturated fatty acid palmitate-induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids in Health and Disease, 12, 104–113. https://doi.org/10.1186/1476–511X-12–104.
  197. Zhang, K. (2010). Integration of ER stress, oxidative stress and the inflammatory response in health and disease. International Journal of Clinical and Experimental Medicine, 3(1), 33–40.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».