Food metaengineering

Scientific peer-reviewed journal

The peer-reviewed scientific journal "FOOD METAENGINEERING" is registered with the Federal Service for Supervision of Communications, Information Technology, and Mass Media on March 13, 2023 (Certificate of Registration Эл No. ФС77-84878 - online publication).

It is published four times a year.

Distribution - Russian Federation, foreign countries.

The electronic version of the journal with multimedia applications is available at fme-journal.org.

The "FOOD METAENGINEERING" journal is a scientific publication that reflects the results of cutting-edge research in the field of food science, food expert organization, and food safety provision.

The journal publishes original empirical and review articles in the field of food science, short communications, and pilot studies at the intersection of technical, biological, and agricultural sciences, including:

  • Agricultural and other food raw materials: quality and safety monitoring systems.
  • Methodology and modeling approaches for evaluating the composition and quality of raw materials and their processed products.
  • Technological principles and techniques for the production and processing of raw materials, considering physical, chemical, and microbiological mechanisms of transformation during the production of food products, bioactive substances, and food additives, as well as other industrial products.
  • Processing technologies of agricultural and other raw materials into food products, bioactive substances, food additives, and other industrial products of general and special purposes, including genomic, post-genomic, proteomic, digital, additive, DNA technologies, etc.
  • Food physics, chemistry, and microbiology.
  • Personalized nutrition: scientific foundations, technologies, and devices.
  • Environmental aspects of food raw material production and processing.
  • Processes and equipment for the production and processing of food raw materials.
  • Principles of food waste processing (food products with completely or partially lost initial consumer properties during their production, processing, utilization, or storage).

The editorial board aims to promote an interdisciplinary approach to research.


Edição corrente

Volume 3, Nº 2 (2025)

Capa

Edição completa

EDITORIA

On the Use of Institutional Email Addresses When Submitting a Manuscript: An Editorial Perspective
Ryabova A.
Resumo
This editorial outlines the rationale for requiring authors to provide an institutional email address when submitting a manuscript to a scholarly journal. It highlights the role of institutional emails in verifying authorship and affiliation, enhancing the transparency of the editorial process, and fostering greater trust in published research. While the editorial acknowledges that exceptions may apply in certain cases, it emphasizes that the use of a verified institutional address is a mandatory requirement for authors formally affiliated with academic or research institutions. 
Food metaengineering. 2025;3(2):7-10
pages 7-10 views

ORIGINAL EMPIRICAL RESEARCH

Gluten-Free Baked Goods Made from Sprouted Amaranth: The Use of Grape Seed Extract and Partial Dehydration in a Functional Recipe
Esaulko N., Selivanova M., Solomatin D., Romanenko E., Mironova E., Novak M.
Resumo
Background: The growing prevalence of celiac disease and the global shift toward health-conscious eating are driving sustained demand for gluten-free baked goods. In the context of import substitution, the development of bakery products based on locally sourced plant materials is gaining particular relevance. Amaranthus cruentus L. is rich in protein, squalene, and biologically active compounds, yet its use is limited by the absence of gluten. Combining amaranth with Vitis vinifera seed extract and partial dehydration technology helps compensate for structural deficiencies and enhances the functional value of the final product.Purpose: To develop and experimentally validate a gluten-free bakery technology based on germinated amaranth, incorporating grape seed extract and partial dehydration, aimed at improving nutritional value, enhancing textural properties, and increasing accessibility of preventive nutrition for individuals with celiac disease and consumers of functional foods.Materials and Methods: The study employed Amaranthus cruentus seeds (‘Karakula’ cultivar, 2023 harvest), grape seed extract (GSE 95% series), supporting ingredients (buckwheat and brown rice flour, apple), and purified water. Sensory evaluation was conducted according to GOST 5667-2022 using a tasting panel. Physicochemical parameters (moisture content, acidity, porosity, and gluten content) were determined according to GOST 34835-2022.Results: The developed formulation demonstrated high porosity (72%), balanced acidity (2.8°), optimal moisture content (47.2%), and complete gluten absence (<1 mg/kg), confirming the product’s suitability for gluten-free diets. The proposed technology preserves bioactive components, improves structural properties, and extends shelf life. Economic feasibility is achieved through the use of local raw materials and energy-efficient dehydration processes.Conclusion: The proposed technology offers an effective solution to the challenges of gluten-free baking by delivering improved sensory and physicochemical characteristics, high nutritional value, and enhanced product accessibility. Further research will focus on scaling production, diversifying product lines, and clinically validating the nutraceutical effect. 
Food metaengineering. 2025;3(2):11-26
pages 11-26 views

ORIGINAL THEORETICAL RESEARCH

Chemical Contaminants in Ready-to-Eat Food Products: Control and Contamination Mitigation (A Scoping Review)
Lavrukhina O., Makarov D., Kozeicheva E., Balagula T., Tretyakov A., Gergel M., Lozovaya E.
Resumo
Introduction: Ensuring the safety of ready-to-eat food products requires contamination control at all stages of their life cycle—from the procurement of food raw materials to storage and distribution. In light of the introduction of new technologies and materials in the chemical, pharmaceutical, food, and agricultural sectors, as well as updated data on the toxicity of certain compounds, there is a growing need to regularly update information on potential food contaminants, methods for their detection, and strategies for reducing contamination levels.Purpose: To provide an updated overview of chemical contamination in food products, covering key stages of its formation (raw materials, production, packaging, storage), modern methods of contaminant detection, and approaches to reducing their presence.Materials and Methods: The literature search was conducted in the Scopus, ScienceDirect, PubMed, and RSCI databases, covering sources published between 2011 and 2024. The following descriptors were used: chemical contamination, chemical risk/hazards, food raw materials, ready-to-eat products/dishes, processed food. Source selection followed the PRISMA-ScR protocol, using Mendeley as a reference manager. Microsoft Excel was used for bibliographic mapping and data visualization. Additional information was drawn from the Russian national veterinary information system Vetis (component “Vesta”) and official reports from relevant regulatory agencies in Russia and abroad (including Rospotrebnadzor and ANSES).Results: Against the backdrop of rapid technological advancement, the range of chemical contaminants has expanded significantly, particularly due to the inclusion of micro- and nanoplastics as well as transformation products of pharmaceutical substances and pesticides. Analysis of antibiotic residues in livestock raw materials and processed products (2020–2024) indicates frequent detection of fluoroquinolones, tetracyclines, penicillins, amphenicols, and sulfonamides. A promising direction involves the use of natural bioactive compounds that not only help reduce contamination (especially from polycyclic aromatic hydrocarbons (PAHs) and nitrosamines) but also serve as alternatives to synthetic food additives. The need for highly sensitive and reliable analytical methods capable of detecting both long-established and emerging contaminants has been clearly identified.Conclusion: The results of this scoping review may be applied in the planning and implementation of governmental and industrial food safety monitoring programs, as well as in the development of improved chemical safety control measures for food production facilities.
Food metaengineering. 2025;3(2):27-78
pages 27-78 views

SCOPING REVIEW

Mechanisms of Enhancing Bacteriocin Synthesis by Members of the Lactobacillaceae
Sokolov I., Nsanova V., Vinogradov V., Kanochkina M.
Resumo
Background: Bacteriocins produced by lactic acid bacteria (LAB) are natural antimicrobial peptides capable of effectively inhibiting the growth of pathogenic and antibiotic-resistant microorganisms. Their application in the food, medical, and biotechnological industries requires stable and high-yield production. Enhancing the productivity of producer strains is a key factor for expanding the industrial use of bacteriocins.Purpose: A comparative analysis of biochemical, technological, and genetic factors affecting bacteriocin yield in members of the Lactobacillaceae family, with a focus on practical strategies to enhance their synthesis.Manerials and Methods: A systematic literature review was conducted using the PRISMA protocol, covering publications from 2015–2025. The study analyzed the effects of cultivation conditions (pH, temperature, medium composition, agitation rate), carbon and nitrogen sources, and interspecies microbial interactions. Special attention was given to genetic engineering, including regulated expression systems and CRISPR-Cas9. Co-culturing methods and quorum-sensing inducers were also evaluated.Results: Optimization of the growth medium, selection of carbohydrate and nitrogen supplements, and the use of biological inducers (PlnA, AI-2) were found to increase bacteriocin yield by 30–70%. Co-cultivation with Bacillus subtilis enhanced the expression of gene clusters regulating plantaricin synthesis. Heterologous expression using nisin-based systems enabled the production of active PlnJ and PlnK peptides with pronounced antimicrobial activity. Analysis of Lactiplantibacillus plantarum strains revealed that maximum cell density, achieved between 28 and 34 hours, correlated with peak bacteriocin production. Genetic engineering technologies, particularly CRISPR-Cas9, demonstrated high potential for improving production strains.Conclusion: The findings indicate that a combined approach can significantly increase bacteriocin yields. A rational strategy, tailored to strain characteristics, production goals, and technical feasibility, ensures efficient scalability without increasing production costs.
Food metaengineering. 2025;3(2):79-105
pages 79-105 views
Whey in 3D Printing: A Scoping Review
Bolshakova E., Poklar Ulrih N.
Resumo
Introduction: The issue of dairy whey utilization remains relevant despite advancements in modern processing technologies, such as membrane technologies, biotechnological approaches, and preservation methods. Global whey production exceeds 160 million tons annually and continues to grow, necessitating new solutions within the circular economy framework. In recent years, Industry 4.0 technologies, including 3D printing (3DP), have emerged as promising tools for processing dairy by-products. However, adapting whey protein products for 3DP requires further investigation of their properties and modification methods.Purpose: This scoping review aimed to analyze the potential and current applications of whey protein products as components of 3DP inks.Materials and Methods: The review was conducted in accordance with PRISMA-ScR guidelines. A literature review was conducted using ScienceDirect, Scopus, and PubMed (2010–2025) with a detailed search strategy. VosViewer was used for thematic analysis of the research field.Results: Analysis of 56 selected sources revealed that whey protein components (76% of cases involving WPI) are actively studied as ingredients for 3DP inks. Their potential applications span food production, including functional and personalized nutrition (e.g., for individuals with dysphagia), as well as biomedicine, tissue engineering, and the chemical industry. Research primarily focuses on the rheological, textural, and microstructural characteristics of 3DP materials, alongside modification methods, including adjusting ink composition, pre-3DP processing (such as pH regulation, heat, and mechanical treatment), and post-printing techniques (such as drying, carbonization, and microwave treatment).Conclusion: The review confirms the promise of whey proteins in 3DP materials. To advance research, the authors recommend systematizing knowledge on key components combined with whey proteins, predictive modeling of optimal formulations based on intermolecular interactions and functional properties, and integrating other whey-derived ingredients, such as hydrolysates, into 3DP applications.
Food metaengineering. 2025;3(2):106-132
pages 106-132 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».