Polysaccharide-Controlled Crystallization of Lactose in Sweetened Condensed Milk
- 作者: Barkovskaya I.A.1, Kruchinin A.G.1, Turovskaya S.N.1, Illarionova E.E.1, Bolshakova E.I.1
-
隶属关系:
- All-Russian Dairy Research Institute
- 期: 卷 1, 编号 4 (2023)
- 页面: 11-27
- 栏目: ORIGINAL EMPIRICAL RESEARCH
- URL: https://journals.rcsi.science/2949-6497/article/view/352944
- DOI: https://doi.org/10.37442/fme.2023.4.25
- ID: 352944
如何引用文章
全文:
详细
Introduction: One of the main problems when storing sweetened condensed milk is the formation of organoleptically perceptible lactose crystals larger than 10 microns. To prevent this defect, the technology of introducing a fine-crystalline lactose seed has widely proven itself, ensuring the production of a high-quality product. However, this traditional technology is energy-intensive, requires large production areas and metal-intensive equipment in the form of vacuum crystallizers. In this regard, research into alternative approaches that prevent spontaneous crystallization of lactose during the production of sweetened condensed milk remains relevant.Purpose: The purpose of this study is to create a composition of polysaccharides to prevent the formation of organoleptically perceptible lactose crystals in sweetened condensed milkMaterials and Methods: The materials used were commercial samples of skimmed milk powder, sugar, polysaccharides and whey protein hydrolyzate powder. The work used the methods of rotational viscometry, electron microscopy and the method of sorption-capacitance determination of bound waterResults: The paper presents data on the influence of individual polysaccharides, as well as their complexes on the process of crystallization of lactose in concentrated milk systems with sugar on the formation of a stable structure of matrices, reflecting the ability to have both positive and negative effects of hydrocolloids on the process of crystallization of lactose and changes in dynamic viscosity. For multicomponent complex systems containing carboxymethylcellulose, sodium alginate, tara gum, locust bean gum and gum arabic, both a synergistic effect, consisting in the intermolecular interaction of polysaccharides and slowing down the spontaneous crystallization of lactose, and an antagonism effect, manifested in an increase in crystal size, have been establishedConclusion: The composition containing tara gum, carboxymethylcellulose and gum arabic showed the most pronounced properties for inhibiting the growth of lactose crystals, as well as high thixotropic properties. In practical terms, the use of this complex additive for the production of condensed milk products with sugar by the method of restoring dry components can replace the classical process of seeding fine-crystalline lactose, and, accordingly, reduce the energy and metal consumption of the process of crystallization of lactose in the product
作者简介
Irina Barkovskaya
All-Russian Dairy Research Institute
编辑信件的主要联系方式.
Email: i_barkovskaya@vnimi.org
ORCID iD: 0000-0003-4779-1076
SPIN 代码: 9404-4365
Alexander Kruchinin
All-Russian Dairy Research Institute
Email: a_kruchinin@vnimi.org
ORCID iD: 0000-0002-3227-8133
SPIN 代码: 7930-1023
Svetlana Turovskaya
All-Russian Dairy Research Institute
Email: s_turovskaya@vnimi.org
ORCID iD: 0000-0002-5875-9875
SPIN 代码: 6904-5308
Elena Illarionova
All-Russian Dairy Research Institute
Email: e_illarionova@vnimi.org
ORCID iD: 0000-0002-9399-0984
SPIN 代码: 2990-2390
Ekaterina Bolshakova
All-Russian Dairy Research Institute
Email: e_bolshakova@vnimi.org
ORCID iD: 0000-0002-8427-0387
SPIN 代码: 9732-9017
参考
Варганов, В. А. (2008). Стабилизаторы «СТМ». Актуальные вопросы переработки мясного и молочного сырья, (3), 206–213. Виноградова, Ю. В. (2018). Теоретические и практические аспекты процесса кристаллизации лактозы в производстве сгущенных молочных консервов с сахаром. Молочнохозяйственный вестник, 3(31), 79–90. Галстян, А. Г., Илларионова, Е. Е., Радаева, И. А., Туровская, С. Н., Червецов, В. В., & Петров, А. Н. (2012). Новый национальный стандарт на вареное сгущенное молоко с сахаром. Молочная промышленность, (8), 36–37. Гнездилова, А. И., & Куренкова, Л. А. (2014). Реологические характеристики консервированного молочного продукта со сложным углеводным составом. Молочнохозяйственный вестник, 1(13), 56–63. Голубева, Л. В., Пожидаева, Е. А., & Матвиенко, А. А. (2020). Формирование состава молокосодержащих консервов с сахаром. Актуальные вопросы молочной промышленности, межотраслевые технологии и системы управления качеством, 1(1), 130–133. https://doi.org/10.37442/978–5-6043854–1-8–2020-1–130-133 Косова, И. А. (2010). Молокосодержащий продукт «Мастер Сгущёнов». Молочная промышленность, (10), 54–55. Писарева, Е. В. (2016). Исследование стабилизационных систем для сгущенных молочных консервов. Ползуновский вестник, (1), 29–33. Радаева, И. А. Гордезиани, В. С., & Шулькина, С. П. (1986). Технология молочных консервов и заменителей цельного молока: Справочник. Агропромиздат. Радаева, И. А., Илларионова, Е. Е., & Туровская, С. Н. (2020). К вопросу изучения микроструктурных изменений молочных консервов в процессе длительного хранения. Инновационные технологии обработки и хранения сельскохозяйственного сырья и пищевых продуктов: Сборник научных трудов ученых и специалистов к 90-летию ВНИХИ (с. 445–452). Амирит. Рябова, А. Е., Галстян, А. Г., Малова, Т. И., Радаева, И. А., & Туровская, С. Н. (2014). К вопросу о гетерогенной кристаллизации лактозы в технологиях сгущенных молочных продуктов с сахаром. Техника и технология пищевых производств, 1(32), 78–83. Рябова, А. Е., Хуршудян, С. А., Семипятный, В. К. (2018). Совершенствование методологии оценки консистенции продуктов, склонных к спонтанной кристаллизации сахаров. Пищевая промышленность, 12, С. 74–76. Туровская, С. Н., Галстян, А. Г., Петров, А. Н., Радаева, И. А., Илларионова, Е. Е., Семипятный, В. К., & Хуршудян, С. А. (2018). Безопасность молочных консервов как интегральный критерий эффективности их технологии. Российский опыт. Пищевые системы, 2(1), 29–54. https://doi.org/10.21323/2618–9771-2018–1-2–29-54 Фатьянов, Е. В., Царьков, И. В., & Тё, Р. Е. (2011). Влияние водных растворов углеводов на активность воды. Молочная промышленность, (12), 52–53. Червецов, В. В., & Гнездилова, А. И. (2011). Интенсификация процессов кристаллизации при производстве молочных продуктов. Россельхозакадемия. Arbuckle, W. S. (1986). Ice cream (4th ed.). Springer Science+Business Media. https://doi.org/10.1007/978–1-4615–7222-0 Bayarri, S., González-Tomás, L., & Costell, E. (2009). Viscoelastic properties of aqueous and milk systems with carboxymethyl cellulose. Food Hydrocolloids, 23(2), 441–450. https://doi.org/10.1016/j.foodhyd.2008.02.002 Ben Said, L., Gaudreau, H., Dallaire, L., Tessier, & M., Fliss, I. (2019). Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology, 15(3), 138–147. https://doi.org/10.1089/ind.2019.29175.lbs Das, D., Linn, S., Sormoli, M. E., & Langrish, T. A. G. (2013). The effects of WPI and Gum Arabic inhibition on the solid-phase crystallisation kinetics of lactose at different concentrations. Food Research International, 54(1), 318–323. https://doi.org/10.1016/j.foodres.2013.07.038 Fakhreeva, A. V., Gusakov, V. N., Voloshin, A. I., Tomilov, Y. V., Nifant’ev, N. E., & Dokichev, V. A. (2016). Effect of sodium-carboxymethylcellulose on inhibition of scaling by calcium carbonate and sulfate. Russian Journal of Applied Chemistry, 89(12), 1955–1959. https://doi.org/10.1134/s1070427216120053 Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., & Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164, 4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046 Ghorbani Gorji, E., Waheed, A., Ludwig, R., Toca-Herrera, J. L., Schleining, G., & Ghorbani Gorji, S. (2018). Complex Coacervation of Milk Proteins with Sodium Alginate. Journal of Agricultural and Food Chemistry, 66(12), 3210–3220. https://doi.org/10.1021/acs.jafc.7b03915 Keogh, M. K., Lainé, K. I., & O’Connor, J. F. (1996). Rheology of sodium caseinate-carrageenan mixtures. Journal of Texture Studies, 26(6), 635–652. https://doi.org/10.1111/j.1745–4603.1996.tb00987.x Malkaj, P., Pierri, E., & Dalas, E. (2005). The crystallization of Hydroxyapatite in the presence of sodium alginate. Journal of Materials Science: Materials in Medicine, 16(8), 733–737. https://doi.org/10.1007/s10856–005-2610–9 Pirsa, S., & Hafezi, K. (2023). Hydrocolloids: Structure, preparation method, and application in food industry. Food Chemistry, 399, 133967. https://doi.org/10.1016/j.foodchem.2022.133967 Portnoy, M., & Barbano, D. M. (2021). Lactose: Use, measurement, and expression of results. Journal of Dairy Science, 104(7), 8314–8325. https://doi.org/10.3168/jds.2020–18706 Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P., Nagar, B. J., Naikwadi, N. N., & Variya, B. C. (2013). Galactomannan: A versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, 60, 83–92. https://doi.org/10.1016/j.ijbiomac.2013.05.017 Sánchez-García, Y. I., Gutiérrez-Méndez, N., Salmerón, I., Ramos-Sánchez, V. H., Leal-Ramos, M. Y., & Sepúlveda, D. R. (2021). Mutarotation and solubility of lactose as affected by carrageenans. Food Research International, 142, 110204. https://doi.org/10.1016/j.foodres.2021.110204 Smykov, I., Gnezdilova, A., Vinogradova, Y., Muzykantova, A., & Lyamina, A. (2019). Cooling curve in production sweetened concentrated milk supplemented with whey: Influence on the size and microstructure of lactose crystals. Food Science and Technology International, 25(6), 451–461. https://doi.org/10.1177/1082013219830494 Sutton, R. L., & Wilcox, J. (1998). Recrystallization in model ice cream solutions as affected by stabilizer concentration. Journal of Food Science, 63(1), 9–11. https://doi.org/10.1111/j.1365–2621.1998.tb15663.x Takeuchi, H., Yasuji, T., Yamamoto, H., & Kawashima, Y. (2000). Temperature- and Moisture-Induced Crystallization of Amorphous Lactose in Composite Particles with Sodium Alginate Prepared by Spray-Drying. Pharmaceutical Development and Technology, 5(3), 355–363. https://doi.org/10.1081/pdt-100100551
补充文件

