The Influence of Storage Conditions on the Color Profile of Sweetened Condensed Whole Milk
- 作者: Bolshakova E.I.1, Barkovskaya I.A.1, Kruchinin A.G.1, Turovskaya S.N.1, Illarionova E.E.1, Orlova E.S.1
-
隶属关系:
- All-Russian Dairy Research Institute
- 期: 卷 2, 编号 3 (2024)
- 页面: 25-40
- 栏目: ORIGINAL EMPIRICAL RESEARCH
- URL: https://journals.rcsi.science/2949-6497/article/view/352322
- DOI: https://doi.org/10.37442/fme.2024.3.62
- ID: 352322
如何引用文章
全文:
详细
作者简介
Ekaterina Bolshakova
All-Russian Dairy Research Institute
Email: e_bolshakova@vnimi.org
ORCID iD: 0000-0002-8427-0387
Irina Barkovskaya
All-Russian Dairy Research Institute
Email: i_barkovskaya@vnimi.org
ORCID iD: 0000-0003-4779-1076
Aleksandr Kruchinin
All-Russian Dairy Research Institute
Email: a_kruchinin@vnimi.org
ORCID iD: 0000-0002-3227-8133
Svetlana Turovskaya
All-Russian Dairy Research Institute
Email: s_turovskaya@vnimi.org
ORCID iD: 0000-0002-5875-9875
Elena Illarionova
All-Russian Dairy Research Institute
Email: e_illarionova@vnimi.org
ORCID iD: 0000-0002-9399-0984
Elena Orlova
All-Russian Dairy Research Institute
Email: orlofflena2012@yandex.ru
ORCID iD: 0009-0009-8493-1163
参考
Adrian, J. (2019). The Maillard reaction. In Handbook of Nutritive Value of Processed Food (pp. 529–608). CRC Press. http://dx.doi.org/10.1201/9780429290527-22 Al-Hilphy, A. R., Ali, H. I., Al-IEssa, S. A., Gavahian, M., & Mousavi-Khaneghah, A. (2022). Assessing compositional and quality parameters of unconcentrated and refractive window concentrated milk based on color components. Dairy, 3(2), 400–412. https://doi.org/10.3390/dairy3020030 Alinovi, M., Mucchetti, G., Wiking, L., & Corredig, M. (2020). Freezing as a solution to preserve the quality of dairy products: The case of milk, curds and cheese. Critical Reviews in Food Science and Nutrition, 61(20), 3340–3360. https://doi.org/10.1080/10408398.2020.1798348 Anema, S. G. (2020). The whey proteins in milk: Thermal denaturation, physical interactions, and effects on the functional properties of milk. In Milk Proteins (pp. 325–384). Elsevier. http://dx.doi.org/10.1016/b978-0-12-815251-5.00009-8 Augustin, M. A., & Udabage, P. (2007). Influence of processing on functionality of milk and dairy proteins. In Advances in Food and Nutrition Research (pp. 1–38). Elsevier. http://dx.doi.org/10.1016/s1043-4526(07)53001-9 Bottiroli, R., Troise, A. D., Aprea, E., Fogliano, V., Gasperi, F., & Vitaglione, P. (2021). Understanding the effect of storage temperature on the quality of semi-skimmed UHT hydrolyzed-lactose milk: An insight on release of free amino acids, formation of volatiles organic compounds and browning. Food Research International, 141, 110120. https://doi.org/10.1016/j.foodres.2021.110120 Chen, C., Mei, J., & Xie, J. (2021). Impact of thawing methods on physico‐chemical properties and microstructural characteristics of concentrated milk. Journal of Food Processing and Preservation, 45(9). https://doi.org/10.1111/jfpp.15642 Considine, T., Patel, H. A., Anema, S. G., Singh, H., & Creamer, L. K. (2007). Interactions of milk proteins during heat and high hydrostatic pressure treatments — A Review. Innovative Food Science & Emerging Technologies, 8(1), 1–23. https://doi.org/10.1016/j.ifset.2006.08.003 Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., & O’Mahony, J. A. (2015). Heat-Induced changes in milk. In Dairy Chemistry and Biochemistry (pp. 345–375). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-14892-2_9 Garcı́a-Risco, M. R., Ramos, M., & López-Fandiño, R. (2002). Modifications in milk proteins induced by heat treatment and homogenization and their influence on susceptibility to proteolysis. International Dairy Journal, 12(8), 679–688. https://doi.org/10.1016/s0958-6946(02)00060-2 Gazi, I., Franc, V., Tamara, S., van Gool, M. P., Huppertz, T., & Heck, A. J. R. (2022). Identifying glycation hot-spots in bovine milk proteins during production and storage of skim milk powder. International Dairy Journal, 129, 105340. https://doi.org/10.1016/j.idairyj.2022.105340 Halabi, A., Deglaire, A., Hamon, P., Bouhallab, S., Dupont, D., & Croguennec, T. (2020). Kinetics of heat-induced denaturation of proteins in model infant milk formulas as a function of whey protein composition. Food Chemistry, 302, 125296. https://doi.org/10.1016/j.foodchem.2019.125296 Jansson, T., Nielsen, S. B., Petersen, M. A., & Lund, M. N. (2020). Temperature-dependency of unwanted aroma formation in reconstituted whey protein isolate solutions. International Dairy Journal, 104, 104653. https://doi.org/10.1016/j.idairyj.2020.104653 Jean, K., Renan, M., Famelart, M.-H., & Guyomarc’h, F. (2006). Structure and surface properties of the serum heat-induced protein aggregates isolated from heated skim milk. International Dairy Journal, 16(4), 303–315. https://doi.org/10.1016/j.idairyj.2005.04.001 Jongberg, S., Rasmussen, M., Skibsted, L. H., & Olsen, K. (2012). Detection of advanced glycation end-products (ages) during dry-state storage of β-lactoglobulin/lactose. Australian Journal of Chemistry, 65(12), 1620. https://doi.org/10.1071/ch12442 Liu, J., Ru, Q., & Ding, Y. (2012). Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Research International, 49(1), 170–183. https://doi.org/10.1016/j.foodres.2012.07.034 Liu, S.-C., Yang, D.-J., Jin, S.-Y., Hsu, C.-H., & Chen, S.-L. (2008). Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems. Food Chemistry, 108(2), 533–541. https://doi.org/10.1016/j.foodchem.2007.11.006 Manzo, C., Nicolai, M. A., & Pizzano, R. (2015). Thermal markers arising from changes in the protein component of milk. Food Control, 51, 251–255. https://doi.org/10.1016/j.foodcont.2014.11.029 Meltretter, J., Becker, C.-M., & Pischetsrieder, M. (2008). Identification and Site-Specific Relative Quantification of β-Lactoglobulin Modifications in Heated Milk and Dairy Products. Journal of Agricultural and Food Chemistry, 56(13), 5165–5171. https://doi.org/10.1021/jf800571j Meyer, B., Al‐Diab, D., Vollmer, G., & Pischetsrieder, M. (2011). Mapping the glycoxidation product Nε‐carboxymethyllysine in the milk proteome. PROTEOMICS, 11(3), 420–428. https://doi.org/10.1002/pmic.201000233 Oldfield, D. J., Taylor, M. W., & Singh, H. (2005). Effect of preheating and other process parameters on whey protein reactions during skim milk powder manufacture. International Dairy Journal, 15(5), 501–511. https://doi.org/10.1016/j.idairyj.2004.09.004 Pathania, S., Parmar, P., & Tiwari, B. K. (2019). Stability of proteins during processing and storage. In Proteins: Sustainable Source, Processing and Applications (pp. 295–330). Elsevier. http://dx.doi.org/10.1016/b978-0-12-816695-6.00010-6 Petrov, A. N., Galstyan, A. G., Radaeva, I. A., Turovskaya, S. N., Illarionovа, E. E., Semipyatniy, V. K., Khurshudyan, S. A., DuBuske, L. M., & Krikunova, L. N. (2017). Indicators of Quality of Canned Milk: Russian and International Priorities. Foods and Raw Materials, 5(2), 151–161. https://doi.org/10.21603/2308-4057-2017-2-151-161 Ryabova, A. E., Tolmachev, V. A., & Galstyan, A. G. (2022). Phase Transitions of Sweetened Condensed Milk in Extended Storage Temperature Ranges. Food Processing: Techniques and Technology, 52(3), 526-535. https://doi.org/10.21603/2074-9414-2022-3-2379 Sahu, J. K., & Kumar Mallikarjunan, P. (2016). Effect of heat assisted high pressure treatment on rate of change in pH and gel strength of acidified milk gel in the preparation of soft cheese. International Food Research Journal, 23(6), 2459–2462. Shao, Y., Yuan, Y., Xi, Y., Zhao, T., & Ai, N. (2023). Effects of homogenization on organoleptic quality and stability of pasteurized milk samples. Agriculture, 13(1), 205. https://doi.org/10.3390/agriculture13010205 Sharma, N., Sharma, R., Rajput, Y. S., Mann, B., Singh, R., & Gandhi, K. (2021). Separation methods for milk proteins on polyacrylamide gel electrophoresis: Critical analysis and options for better resolution. International Dairy Journal, 114, 104920. https://doi.org/10.1016/j.idairyj.2020.104920 Stojanovska, S., Gruevska, N., Tomovska, J., & Tasevska, J. (2017). Maillard reaction and lactose structural changes during milk processing. Chemistry Research Journal, 2(6), 139-145. Tribst, A. A. L., Falcade, L. T. P., Carvalho, N. S., Cristianini, M., Leite Júnior, B. R. de C., & Oliveira, M. M. de. (2020). Using physical processes to improve physicochemical and structural characteristics of fresh and frozen/thawed sheep milk. Innovative Food Science & Emerging Technologies, 59, 102247. https://doi.org/10.1016/j.ifset.2019.102247 Van Boekel, M. A. J. S. (2001). Kinetic aspects of the Maillard reaction: A critical review. Nahrung/Food, 45(3), 150–159. https://doi.org/10.1002/1521-3803(20010601)45:33.0.co;2-9 Van Boekel, M. A. J. S., & Berg, H. E. (2005). Kinetics of the early maillard reaction during heating of milk. In Maillard Reactions in Chemistry, Food and Health, 170–175. Elsevier. https://doi.org/10.1533/9781845698393.3.170 Van den Oever, S. P., & Mayer, H. K. (2021). Analytical assessment of the intensity of heat treatment of milk and dairy products. International Dairy Journal, 121, 105097. http://dx.doi.org/10.1016/j.idairyj.2021.105097 Xiang, J., Liu, F., Wang, B., Chen L, Liu W, & Tan S. A. (2021). Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods, 10(9), 1998. https://doi.org/10.3390/foods10091998 Барцаев, А. В. (2023). Международные проекты таможенной службы России: состояние и перспективы их развития. Теория и практика экономики и предпринимательства, 129-133. Гаврилов, А. И., Сянъюй, У., & Чжэнь, Ч. (2024). Новый мировой порядок в безопасности транспортных перевозок грузов. Научные проблемы водного транспорта, (78), 127-140. https://doi.org/10.37890/jwt.vi78.461 Гурьева, К. Б., Иванова, Е. В., Тюгай, О. А. (2019). Изучение влияния температурный параметров на качество молочных консервов «Молоко цельное сгущенное с сахаром». Товаровед продовольственных товаров, (7), 55–61. Ефимова, Е. В., Беспалова, Е. В., Дмитрук, Е. М., Вырина, С. И., & Смоляк, Т. М. (2024). Исследование физико-химических параметров и показателей качества молочных консервов при их длительном хранении в условиях отрицательных температур. Актуальные вопросы переработки мясного и молочного сырья, (17), 147-155. Рябова, А. Е. (2023). Исследование теплофизических свойств сгущенного молока с сахаром. Пищевая промышленность, (2), 52-55. https://doi.org/10.52653/PPI.2023.2.2.012 Рябова, А. Е., Петров А. Н., & Пряничникова Н. С. (2023). Актуализация сроков годности и условий хранения молочных консервов: изменения в действующие инструкции. Переработка молока, 286(8), 37. https://doi.org/10.33465/2222-5455-2023-8-37 Туровская, С. Н., Галстян, А. Г., Петров, А. Н., Радаева, И. А., Илларионова, Е. Е., Семипятный, В. К., & Хуршудян, С. А. (2018). Безопасность молочных консервов как интегральный критерий эффективности их технологии. Российский опыт. Пищевые системы, 1(2), 29-54. https://doi.org/10.21323/2618-9771-2018-1-2-29-54 Усов, Д. Ю., & Овчинников, Е. А. (2016). Основные требования, предъявляемые к хранению продовольствия в особых климатических условиях. Вестник Военной академии материально-технического обеспечения им. генерала армии А.В.Хрулева, 7(3), 62-67.
补充文件

