Comparative analysis of cryptocurrency series prediction models
- Authors: Yacob P.A1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Issue: Vol 4, No 5 (2025)
- Pages: 47-55
- Section: Articles
- URL: https://journals.rcsi.science/2949-4648/article/view/378790
- ID: 378790
Cite item
Abstract
this article presents a comparative analysis of modern approaches to forecasting the dynamics and volatility of cryptocurrency series. It considers classical statistical models (ARIMA, GARCH), seasonal forecasting methods (Prophet), and neural network algorithms (LSTM, GRU), as well as their hybrid architectures. Particular attention is paid to the applicability of models in conditions of limited samples and high information sensitivity of the cryptocurrency market. It is shown that ARIMA retains its significance as an interpretable benchmark for short-term analysis, GARCH remains a key tool for volatility assessment, while neural network and hybrid approaches demonstrate advantages with large data sets but are limited in terms of interpretability. The work contributes to the development of a methodology for forecasting abnormal price movements in decentralized markets, justifying the need to integrate statistical and information-theoretical methods. Prospects for further research are related to the use of entropy analysis and the development of hybrid models to improve the accuracy and stability of forecasts in conditions of high uncertainty. The work was carried out within the framework of the project «Development of a methodology for the formation of an instrumental base for analysis and modeling of spatial socio-economic development of systems in the context of digitalization based on internal reserves» (FSEG- 2023-0008).
References
- Родионов Д.Г., Конников Е.А., Шадров К.С. Инструменты анализа влияния эмоциональной окраски новостного фона на изменение курса криптовалют // Экономические науки. 2022. № 6 (211). С. 139 – 160. doi: 10.14451/1.211.139
- Родионов Д.Г., Пашинина П.А., Конников Е.А. Автоматизированный алгоритм квантификации информационной среды финансового рынка // Экономические науки. 2022. № 7 (212). С. 134 – 139. doi: 10.14451/1.212.134
- Tripathy N., Hota S., Mishra D., Satapathy P., Nayak S.K. Empirical forecasting analysis of Bitcoin prices: a comparison of machine learning, deep learning, and ensemble learning models // International Journal of Electrical and Computer Engineering Systems. 2024. T. 15. No. 1. P. 59 – 70.
- AlMadany N.N., Hujran O., Al Naymat G., Maghyereh A. Forecasting cryptocurrency returns using classical statistical and deep learning techniques // International Journal of Information Management Data Insights. 2024. № 4. P. 119 – 134. doi: 10.1016/j.jjimei.2024.100251.
- D’Angelo G., Ferretti S., Ghini V., Panzieri F. Price prediction of Ethereum using blockchain historical and exchange data by supervised machine learning algorithms // Proceedings of the 2023 4th International Conference on Industrial Engineering and Artificial Intelligence (IEAI). 2023. P. 24 – 29.
- Silva L.G. da, Maciel L. Forecasting volatility of cryptocurrencies: the role of GARCH-family models // XLVI Encontro da ANPAD – EnANPAD 2022: Conference Proceedings. 2022. P. 1 – 25.
- Naimy V.Y., Hayek M.R. Modelling and predicting the Bitcoin volatility using GARCH models // International Journal of Mathematical Modelling and Numerical Optimisation. 2018. № 8 (3). P. 197 – 215. doi: 10.1504/IJMMNO.2018.088994.
- S?zen ?. Volatility dynamics of cryptocurrencies: a comparative analysis using GARCH-family models // Future Business Journal. 2025. Vol. 11. № 166. P. 1 – 12. doi: 10.1186/s43093-025-00568-w
- Kim J.M., Jun C., Lee J. Forecasting the volatility of the cryptocurrency market by GARCH models and stochastic volatility // Mathematics. 2021. № 9 (14). С. 16 – 34. doi: 10.3390/math9141614.
- Sailaja J., Bhargavi K.N., Vanguri G.L.N., Suryakala N., Thiruveedula S. Cryptocurrency price prediction on Ethereum using time series forecasting models ARIMA and Facebook Prophet models // In: Madhavi K.R. (ed.) Proceedings of the International Conference on Computational Innovations and Emerging Trends (ICCIET 2024). Surampalem: Aditya College of Engineering & Technology, 2024. P. 1074 – 1084. doi: 10.2991/978-94-6463-471-6_102
- Shen Z., Wan Q., Leatham D.J. Bitcoin return volatility forecasting: A comparative study between GARCH and RNN // Journal of Risk and Financial Management. 2021. № 14 (7). P. 337 – 349. doi: 10.3390/jrfm14070337
- Feng L. Enhancing cryptocurrency market volatility forecasting with machine learning methods // International Review of Financial Analysis. 2024. P. 204 – 211. doi: 10.1016/j.irfa.2024.103011
- Han B., Liu A., Chen J., Knottenbelt W. Can machine learning models better volatility forecasting? A combined method // The European Journal of Finance. 2025. P. 97 – 109. doi: 10.1080/1351847X.2025.2553053
- Badar W., Ramzan S., Raza A., Fitriyani N.L., Syafrudin M., Lee S.W. Enhanced interpretable forecasting of cryptocurrency prices using autoencoder features and a hybrid CNN-LSTM model // Mathematics. 2025. Vol. 13. № 12. P. 332 – 351. doi: 10.3390/math13121908
- Zhou Y., Xie C., Wang G.-J., Gong J., Zhu Y. Forecasting cryptocurrency volatility: a novel framework based on the evolving multiscale graph neural network // Financial Innovation. 2025. Vol. 11. № 87. P. 66 – 73. doi: 10.1186/s40854-025-00768-x
- Fiszeder P., Ma?ecka M., Moln?r P. Robust estimation of the range-based GARCH model: forecasting volatility, value at risk and expected shortfall of cryptocurrencies // Economic Modelling. 2024. № 141. P. 106 – 111. doi: 10.1016/j.econmod.2024.106887
- Родионов Д.Г., Сорокин В.И., Митязов В.А., Конников Е.А. Анализ влияния информационного потока, генерируемого инвестором, на доходность инвестиционного портфеля // Экономические науки. 2023. № 223. С. 294–303.
- Dudek G., Fiszeder P., Kobus P., Orzeszko W. Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study // Applied Soft Computing. 2024. № 151. P. 111 – 132. doi: 10.1016/j.asoc.2023.111132.
- Teker D., Teker S., Gumustepe E.D. Backtesting Bitcoin volatility: ARCH and GARCH approaches // PressAcademia Procedia. Proceedings of 13th Istanbul Finance Congress (IFC – 2024). 2024. № 20. P. 14 – 16. doi: 10.17261/Pressacademia.2024.1918.
- Bouteska A., Abedin M.Z., Hajek P., Yuan K. Cryptocurrency price forecasting – a comparative analysis of ensemble learning and deep learning methods // International Review of Financial Analysis. 2024. № 92. P. 103 – 109. doi: 10.1016/j.irfa.2023.103055
- Boozary P., Sheykhan S., GhorbanTanhaei H. Forecasting the Bitcoin price using the various machine learning: a systematic review in data-driven marketing // Systems and Soft Computing. 2025. Vol. 7. P. 43 – 47. doi: 10.1016/j.sasc.2025.200209
- Seabe P.L., Moutsinga C.R.B., Pindza E. Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: a deep learning approach // Fractal and Fractional. 2023. Vol. 7. № 2. P. 211 – 219. doi: 10.3390/fractalfract7020203
- Elamine M., Ben Abdallah A. Predicting cryptocurrency prices with a hybrid ARIMA and LSTM model // Journal of Telecommunications and the Digital Economy. 2025. Vol. 13. № 1. P. 98 – 117.
- K?se A., Lind P., Moln?r P., Polasik M. Deep learning and machine learning insights into the global economic drivers of the cryptocurrency market // Journal of Forecasting. 2025. P. 89 – 100. doi: 10.1002/for.3284
- Rodrigues F., Machado M. High-frequency cryptocurrency price forecasting using machine learning models: A comparative study // Information. 2025. № 16 (4). P. 300 – 304. doi: 10.3390/info16040300
- Iuga I.-C., Neri?anu R.-A., Dragolea L.-L. Volatility and spillover analysis between cryptocurrencies and financial indices: a diagonal BEKK and DCC GARCH model approach in support of SDGs // Cogent Economics & Finance. 2024. Vol. 12. № 1. P. 33 – 38. doi: 10.1080/23322039.2024.2437002
- Quang Phung Duy, Nguyen Thi Oanh, Le Thi Phuong Hao, Pham Hoang Hai Duong, Luong Khanh Linh, Nguyen Thi Kim Ngan. Estimating and forecasting bitcoin daily prices using ARIMA-GARCH models // Business Analyst Journal. 2024. Vol. 45. № 1. P. 11 – 23. doi: 10.1108/BAJ-05-2024-0027
Supplementary files
