Entropy analysis of the information environment as a tool for financial diagnostic assessment of cryptocurrency market volatility
- Authors: Yacob P.A1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Issue: Vol 4, No 5 (2025)
- Pages: 4-12
- Section: Articles
- URL: https://journals.rcsi.science/2949-4648/article/view/378769
- ID: 378769
Cite item
Abstract
the article examines the impact of news anomalies on cryptocurrency market volatility using entropy analysis of the information environment and the ARIMA model. The methodological approach combines the calculation of entropy indicators of the news flow and their comparison with ARIMA forecast errors, which allows for a quantitative assessment of the relationship between information shocks and abnormal price movements. It is shown that an increase in the entropy of the news background is a harbinger of instability and can serve as an indicator of increased risk. The results of testing on data on the dynamics of Bitcoin confirm the applicability of the proposed toolkit for diagnosing and forecasting market instability. The work contributes to the development of financial analysis methods by proposing the integration of the entropy approach into risk management systems. Prospects for further research include expanding the set of information background sources and optimising model parameters. The work was carried out within the framework of the project «Development of a methodology for the formation of an instrumental base for analysis and modeling of spatial socio-economic development of systems in the context of digitalization based on internal reserves» (FSEG- 2023-0008).
References
- Родионов Д.Г., Сорокин В.И., Митязов В.А., Конников Е.А. Анализ влияния информационного потока, генерируемого инвестором, на доходность инвестиционного портфеля // Экономические науки. 2023. № 223. С. 294 – 303.
- Родионов Д.Г., Арбатская Д.Е., Унгвари Л., Конников Е.А. Сравнительный анализ подходов к моделированию изменений на финансовых рынках технологического сектора экономики // Мягкие измерения и вычисления. 2024. Т. 74. № 1-1. С. 71 – 82.
- Dudek G., Fiszeder P., Kobus P., Orzeszko W. Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study // Applied Soft Computing. 2024. Т. 151. С. 111132. doi: 10.1016/j.asoc.2023.111132.
- Han B., Liu A., Chen J., Knottenbelt W. Can machine learning models better volatility forecasting? A combined method // The European Journal of Finance. 2025. № 9. С. 1–20. doi: 10.1080/1351847X.2025.2553053.
- Dehouche N. Revisiting the volatility of Bitcoin with approximate entropy // Financial Economics. 2021. № 29 (12). С. 101 – 118. doi: 10.1080/17520843.2021.2013588.
- Родионов Д.Г., Ильясов Р.Х., Хуан Т., Конников Е.А. Моделирование свойств распределения цен на рынке золота // Методология и инструментарий управления. 2024. № 2. С. 146 – 154.
- AlMadany N.N., Hujran O., Al Naymat G., Maghyereh A. Forecasting cryptocurrency returns using classical statistical and deep learning techniques // International Journal of Information Management Data Insights. 2024. Т. 4. С. 34 – 56. doi: 10.1016/j.jjimei.2024.100251.
- Tripathy N., Hota S., Mishra D., Satapathy P., Nayak S.K. Empirical forecasting analysis of Bitcoin prices: a comparison of machine learning, deep learning, and ensemble learning models // International Journal of Electrical and Computer Engineering Systems. 2024. Т. 15. № 1. С. 59 – 70.
- S?zen ?. Volatility dynamics of cryptocurrencies: a comparative analysis using GARCH-family models // Future Business Journal. 2025. Т. 11. № 166. С. 1 – 12. doi: 10.1186/s43093-025-00568-w
- Obanya P.O., Seitshiro M., Olivier C.P., Verster T. A permutation entropy analysis of Bitcoin volatility // Physica A: Statistical Mechanics and its Applications. 2024. Т. 638. № 15. С. 44 – 70. doi: 10.1016/j.physa.2024.129518.
- Assaf A., Bilgin M.H., Demir E. Using transfer entropy to measure information flows between cryptocurrencies // Physica A: Statistical Mechanics and its Applications. 2022. Т. 586. № 15. С. 107 – 114. doi: 10.1016/j.physa.2021.126454
- Zhou Y., Xie C., Wang G.-J., Gong J., Zhu Y. Forecasting cryptocurrency volatility: a novel framework based on the evolving multiscale graph neural network // Financial Innovation. 2025. Т. 11. С. 53 – 87. doi: 10.1186/s40854-025-00768-x
- Baur D.G., Dimpfl T., Kuck K. Liquidity in the cryptocurrency market and commonalities across exchanges // Journal of Financial Stability. 2022. Т. 59. С. 11-26. doi: 10.1016/j.jfs.2022.100967
Supplementary files
