GEOCHEMISTRY AND MINERALOGY OF SEDIMENTS AS TOOLS FOR ASSESSMENT OF THE CAVE BIOTIC OCCUPATION: A CASE STUDY OF THE DENISOVA CAVE
- Authors: Sokol E.V1, Nekipelova A.V1, Kozlikin M.B2, Shunkov M.V2, Kiseleva D.V3, Khvorov P.V4, Filippova K.A4, Tikhova V.D5
-
Affiliations:
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
- Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences
- Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
- Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology of the Ural Branch of the Russian Academy of Science, Ilmen Nature Reserve territory
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 56, No 3 (2025)
- Pages: 527–548
- Section: GEOARCHAEOLOGY
- URL: https://journals.rcsi.science/2949-1789/article/view/355384
- DOI: https://doi.org/10.31857/S2949178925030116
- ID: 355384
Cite item
Abstract
The Denisova Cave, formed during the second half of the Middle Pleistocene in Altai is a key site representing some of the earliest and well-studied examples of hominid habitation and cultural traditions in the Northern and Central Asia. The Middle Pleistocene sedimentary sequence of the cave (the oldest layers 22C, 22B, and 22A of the Central chamber) was studied for the first time using the suite of chemical and mineralogical techniques, including profiling. The background values of major and trace elements were determined for modern soil, alluvium, and loess-soil profile sampled at the sites adjacent to the cave. Compositional difference of the oldest cave sediments as well as high degree of organic preservation allowed us to obtain a set of high-resolution profiles (mineralogical, major-, and trace-element ones). The study substantiates the utility of geochemical and mineralogical features of bulk sediments and their individual components for the purposes of reconstruction of both cave sedimentation regimes and sediment provenance. Combination of compositional characteristic and lack of biogenic component in sediments allowed to characterize the oldest layer 22C as sterile. This type of sediments is typical for caves with closed chambers, cracks, blind passages, and lacking a full through-flow of material. During the time of formation of the layer 22B the cave's Central hall was poorly ventilated due to the lack of opening cracks. Rare findings of bones and geochemical indicators jointly suggest that from this temporal boundary, limited access to the cave appeared. The layer 22A marks the earliest boundary of active biotic adaptation and habitation of the Denisova Cave by different species. The results of geochemical and mineralogical profiling are strongly supported by paleontological and archaeological records, which allows one to use this approach as a reliable tool for analyzing the intensity of occupation of cave shelters by humans and animals.
About the authors
E. V Sokol
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Email: nekipelova@igm.nsc.ru
Novosibirsk, Russia
A. V Nekipelova
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Email: nekipelova@igm.nsc.ru
Novosibirsk, Russia
M. B Kozlikin
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences
Email: nekipelova@igm.nsc.ru
Novosibirsk, Russia
M. V Shunkov
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences
Email: nekipelova@igm.nsc.ru
Novosibirsk, Russia
D. V Kiseleva
Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Email: nekipelova@igm.nsc.ru
Yekaterinburg, Russia
P. V Khvorov
Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology of the Ural Branch of the Russian Academy of Science, Ilmen Nature Reserve territory
Email: nekipelova@igm.nsc.ru
Miass, Russia
K. A Filippova
Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology of the Ural Branch of the Russian Academy of Science, Ilmen Nature Reserve territory
Email: nekipelova@igm.nsc.ru
Miass, Russia
V. D Tikhova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: nekipelova@igm.nsc.ru
Novosibirsk, Russia
References
- Агаджанян А.К., Шуньков М.В. (2009) Развитие природных сообществ Северо-Западного Алтая в антропогене. Археология, этнография и антропология Евразии. № 2 (38). С. 2–18 (In Russian).
- Agadjanian A.K., Shunkov M.V. (2009) Evolution of the Quaternary Environment in the Northwestern Altai. Archaeology, Ethnology & Anthropology of Eurasia. Vol. 37. No. 2. P. 2–18. https://doi.org/10.1016/j.aeae.2009.08.015
- Болиховская Н.С., Шуньков М.В. (2014) Палеогеографические особенности развития растительности и климата Северо-Западного Алтая в плейстоцене. Археология, этнография и антропология Евразии. № 2 (58). С. 2–17 (In Russian).
- Bolikhovskaya N.S., Shunkov M.V. (2014) Pleistocene Environments of the Northwestern Altai: Vegetation and Climate. Archaeology, Ethnology and Anthropology of Eurasia. Vol. 42. No. 2. P. 2–17. https://doi.org/10.1016/j.aeae.2015.01.001
- Vistingauzen V.K. (2019) Speleological zoning of Altai. Izvestiya Altaiskogo otdeleniya Russkogo geograficheskogo obshchestva. Vol. 1. No 52. P. 17–27 (in Russ). https://doi.org/10.24411/2410-1192-2019-15202
- Shokalsky S.P. (Ed.) (2001) Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Izdanie vtoroe. Masshtab: 1:200000. Seriya Altaiskaya. List M-45-I (Soloneshnoe). Ob"yasnitel'naya zapiska (State Geological Map of the Russian Federation. Second edition. Scale 1:200,000. Ser. Altaisk. Sheet M-45-I (Soloneshnoe). Explanatory Note). Sankt Peterburg.: Kartograficheskaya fabrika VSEGEI. (in Russ).
- Derevianko A.P., Molodin V.I. (1994) Denisova peshchera. Chast' 1 (Denisova Cave. Part 1). Novosibirsk: Nauka (Publ.). 260 p (in Russ).
- Деревянко А.П., Шуньков М.В., Козликин М.Б. (2020) Кто такие денисовцы? Археология, этнография и антропология Евразии. Т. 48. № 3. С. 3–32. https://doi.org/10.17746/1563-0102.2020.48.3.003-032 (In Russian).
- Derevianko A.P., Shunkov M.V., Kozlikin M.B. (2020) Who Were the Denisovans? Archaeology, Ethnology and Anthropology of Eurasia. Vol. 48. No. 3. P. 3–32. https://doi.org/10.17746/1563-0110.2020.48.3.003-032
- Sklyarov E.V. (Ed.) (2001) Interpretatsiya geokhimicheskikh dannykh (Interpretation of geochemistry data). Moscow: Intermet Inzhiniring (Publ.). 228 p (in Russ).
- Kulik N.A., Deev E.V., Ulianov V.A. et al. (2023) Manifestations of neotectonics in karst cavities: identification experience on the example of Denisova Cave in Gorny Altai. In: Teoriya i praktika arheologicheskih issledovanii. Vol. 35. No. 4. P. 193–211 (in Russ). https://doi.org/10.14258/tpai(2023)35(4).-11
- Kulkova T.F., Lyubin V.P. (1980) The sediments study results of the Kudaro I and Kudaro III caves using the phosphate analysis method. In: Kudarskie peshchernye paleoliticheskie stoyanki v Jugo-Osetii (voprosy stratigrafii, jekologii, hronologii). Moscow: Nauka (Publ.). P. 45–50 (in Russ).
- Lioubine V.P. (1998) Ashel'skaya epokha na Kavkaze (The Acheulean epoch in the Caucasus). Saint Petersburg: Peterburgskoe vostokovedenie (Publ.). 192 p (in Russ).
- Lioubine V.P., Beliaeva E.V. (2004) Stoyanka Homo erectus na Central'nom Kavkaze v peshchere Kudaro I (A site Homo erectus in the Kudaro 1 Cave (Central Caucasus)). Saint Petersburg: Peterburgskoe vostokovedenie (Publ.). 269 p (in Russ).
- Marinin A.M. (1990). Karst i peshchery Altaya (Сaves and Karst of Altai). Novosibirsk: Gorno-Altaiskii gosudarstvennyi universitet (Publ.). 148 p (in Russ).
- Matrenichev V.A., Klimova E.V. (2015) Clay-rich sediments of caves. Vestnik Sankt-Peterburgskogo universiteta. Seriya 7. Geologiya. Geografiya. No 4. P. 65–82 (in Russ).
- Поспелова Г.А., Голованова Л.В, Дороничев В.Б., Цельмович В.А. (2011) Магнитные и минералогические характеристики пород палеолитической стоянки в Мезмайской пещере (Северный Кавказ). Физика Земли. Т. 47. № 7. С. 86–96 (In Russian).
- Pospelova G.A., Golovanova L.V., Dronochev V.B., Tselmovich V.A. (2011) Magnetic and mineralogical characteristics of rocks at the Mezmaiskaya cave paleolithic site (Northern Caucasus). Izv. Acad. Sci. Phys. Solid Earth (Engl. Transl.). Vol. 47. No. 7. P. 641–651. https://doi.org/ 10.1134/S1069351311060048
- Derevianko A.P., Shunkov M.V., Agadjanian A.K. et al. (2003) Prirodnaya sreda i chelovek v paleolite Gornogo Altaya (Paleoenvironment and Paleolithic human occupation of Gorny Altai). Novosibirsk: IAET SO RAN (Publ.). 448 p (in Russ).
- Rengarten N.V., Chernjahovskii A.G. (1980) Composition and conditions of the sedimentary deposits formation filling the Kudaro I Cave. In: Kudarskie peshchernye paleoliticheskie stoyanki v Jugo-Osetii (voprosy stratigrafii, ekologii, khronologii). Moscow: Nauka (Publ.). P. 33–38 (in Russ).
- Selivanova N.B. (1980) Materials of the coarse fragmental part study of loose deposits in the Kudaro III Cave. In: Kudarskie peshchernye paleoliticheskie stoyanki v Jugo-Osetii (voprosy stratigrafii, ekologii, khronologii). Moscow: Nauka (Publ.). P. 39–44 (in Russ).
- Сенников Н.В., Обут О.Т., Хабибулина Р.А. и др. (2023). Рифовые комплексы алтайского позднеордовикско-раннесилурийского бассейна — строение, классификация, палеобиоты и палеогеографическое положение. Геология и геофизика. T. 64. № 3. C. 352–369. https://doi.org/10.15372/GiG2022112 (In Russian).
- Sennikov N.V., Obut O.T., Khabibulina R.A. et al. (2023) Reef complexes of the Late Ordovician–Early Silurian Altai Basin: classification, structure, paleobiota, and paleogeography. Russian Geology and Geophysics. Vol. 64. No. 3. P. 292–305. https://doi.org/10.2113/RGG20224458
- Сокол Э.В., Некипелова А.В., Козликин М.Б. и др. (2024) Природа биогенных горизонтов в плейстоценовой толще Денисовой пещеры: минералого-геохимические маркеры и реконструкция источников вещества. Археология, этнография и антропология Евразии. Т. 52. № 1. С. 35–46. https://doi.org/10.17746/1563-0102.2024.52.1.035-046 (In Russian).
- Sokol E.V., Nekipelova A.V., Kozlikin M.B. et al. (2024) The origin of biogenic horizons in the pleistocene strata of Denisova Cave: mineralogical and geochemical markers help to reconstruct the sources of matter. Archaeology, Ethnology and Anthropology of Eurasia. Vol. 51. No. 1. P. 35–46. https://doi.org/10.17746/1563-0110.2024.52.1.035-046
- Tselmovich V.A., Korzinova A.S., Doronicheva E.V. et al. (2019) Volcanism and settlement of the northern slope of the Central Caucasus in The Middle Paleolith: new data from the Saraj-Chuko Grotto. Geofizicheskie protsessy i biosfera. Vol. 18. No. 4. P. 95–109 (in Russ). https://doi.org/10.21455/gpb2019.4-9
- Шуньков М.В. Кулик Н.А., Козликин М.Б. и др. (2018) Фосфатная минерализация плейстоцен-голоценовых отложений восточной галереи Денисовой пещер. Доклады Академии наук. Т. 478. № 3. С. 318–322 https://doi.org/10.7868/S0869565218030155 (In Russian).
- Sokol E.V., Kozlikin M.B., Kokh S.N. et al. (2022) Phosphate record in pleistocene-holocene sediments from Denisova Cave: formation mechanisms and archaeological implications. Minerals. Vol. 12. No. 5. 553. https://doi.org/10.3390/min12050553
- Bolhar R., Kamber B.S., Moorbath S. et al. (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. Vol. 222. No. 1. P. 43–60. https://doi.org/10.1016/j.epsl.2004.02.016
- Bosch R.F., White W.B. (2004) Lithofacies and transport of clastic sediments in karstic aquifers. In: Studies of cave sediments: Physical and chemical records of paleoclimate. New York: Kluwer Academic (Publ.). P. 1–22.
- Campbell J.W., Waters M.N., Rich F. (2017) Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitance in Fern Cave, Alabama, USA, from the mid‐Holocene to present. Boreas. Vol. 46. No. 3. P. 462–469. https://doi.org/ 10.1111/bor.12228
- Choi H.S., Yun S.T., Koh Y.K. et al. (2009) Geochemical behavior of rare earth elements during the evolution of CO2-rich groundwater: A study from the Kangwon district, South Korea. Chem. Geol. Vol. 262. No. 3–4. P. 318–327. https://doi.org/ j. chemgeo.2009.01.031
- Dandurand G., Maire R., Ortega R. et al. (2011). X-ray fluorescence microchemical analysis and autoradiography applied to cave deposits: speleothems, detrital rhythmites, ice and prehistoric paintings. Géomorphologie: relief, processus, environnement. Vol. 4. P. 407–426. https://doi.org/ 10.4000/geomorphologie.9623
- Farrant A.R., Smart P.L. (2011) Role of sediment in speleogenesis; sedimentation and paragenesis. Geomorphology. Vol. 134. No. 1–2. P. 79–93. https://doi.org/10.1016/j.geomorph.2011.06.006
- Forray F.L., Onac B.P., Tanţău I. et al. (2015) A Late Holocene environmental history of a bat guano deposit from Romania: an isotopic, pollen and microcharcoal study. Quat. Sci. Rev. Vol. 127. P. 141–154. https://doi.org/10.1016/j.quascirev.2015.05.022
- Greaney A.T., Rudnick R.L., Gaschnig R.M. et al. (2018) Geochemistry of molybdenum in the continental crust. Geochim. Cosmochim. Acta. Vol. 238. P. 36–54. https://doi.org/10.1016/j.gca.2018.06.039
- Jacobs Z., Li B., Shunkov M.V. et al. (2019) Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature. Vol. 565. P. 594–599. https://doi.org/10.1038/s41586-018-0843-2
- Karkanas P., Kyparissi-Apostolika N., Bar-Yosef O. et al. (1999) Mineral assemblages in Theopetra, Greece: a framework for understanding diagenesis in a prehistoric cave. J. Archaeol. Sci. Vol. 26. No. 9. P. 1171–1180 https://doi.org/10.1006/jasc.1998.0354
- Karkanas P., Bar-Yosef O., Goldberg P. et al. (2000) Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J. Archaeol. Sci. Vol. 27. No. 10. P. 915–929. https://doi.org/10.1006/jasc.1999.0506
- Karkanas P., Rigaud J.-P., Simek J.F. et al. (2002) Ash, bones and guano: a study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France. J. Archaeol. Sci. Vol. 29. No. 7. P. 721–732. https://doi.org/10.1006/jasc.2001.0742
- Martini I. (2011) Cave clastic sediments and implications for speleogenesis: new insights from the Mugnano Cave (Montagnola Senese, Northern Apennines, Italy). Geomorphology. Vol. 134. No. 3–4. P. 452–460. https://doi.org/10.1016/j.geomorph.2011.07.024
- Monge G., Jimenez-Espejo F.J., García-Alix, A. et al. (2015) Earliest evidence of pollution by heavy metals in archaeological sites. Sci. Rep. Vol. 5. No 1. 14252. https://doi.org/10.1038/srep14252
- Osborne R.A.L. (1995) Transactions of the British Cave Research Association Evidence for two phases of Late Palaeozoic karstifi cation, cave development and sediment filling in southeastern Australia. Cave and Karst Science. Vol. 22. No. 1. P. 39–44.
- Rosina V.V. (2006) Bats as an indicator of human activity in the Paleolithic using the example of Denisova Cave, Northwestern Altai. Paleontological J. Vol. 40. Suppl. 4. P. 494–500. https://doi.org/10.1134/S0031030106100091
- Smrzka D., Zwicker J., Bach W. et al. (2019) The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review. Facies. Vol. 65. P. 1–47. https://doi.org/10.1007/s10347-019-0581-4
- Sokol E.V., Kozlikin M.B., Kokh S.N. et al. (2022) Phosphate record in pleistocene-holocene sediments from Denisova Cave: formation mechanisms and archaeological implications. Minerals. Vol. 12. No. 5. 553. https://doi.org/10.3390/min12050553
- Taylor S.R., McLennan S.M. (1985) The continental crust: its composition and evolution. Oxford: Blackwell (Publ.). 315 p.
- Warr L.N. (2021) IMA–CNMNC approved mineral symbols. Mineral. Mag. Vol. 85. No. 3. P. 291–320. https://doi.org/10.1180/mgm.2021.43
- White W.B. (2007) Cave sediments and paleoclimate. J. Cave Karst Stud. Vol. 69. No. 1. P. 76–93.
- Wiersma J.P., Roberts E.M., Dirks P.H. (2020) Formation of mud clast breccias and the process of sedimentary autobrecciation in the hominin‐bearing (Homo naledi) Rising Star Cave system, South Africa. Sedimentology. Vol. 67. No. 2. P. 897–919. https://doi.org/10.1111/sed.12666
- Yang J., Torres M., McManus J. et al. (2017) Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: role of post-depositional diagenesis of phosphorus phases. Chem. Geol. Vol. 466. P. 533–544. https://doi.org/10.1016/j.chemgeo.2017.07.003
Supplementary files


