Darhad paleolake and Darhad glacial Megafloods in the context of Catafluvial events in North Asia in the late Pleistocene
- Authors: Arzhannikov S.G.1, Arzhannikova A.V.1, Braucher R.2,3
-
Affiliations:
- Institute of the Earth’s Crust SB RAS
- French National Centre for Scientific Research (CNRS)
- Centre européen de recherche et d’enseignement de géosciences de l’environnement (CEREGE)
- Issue: Vol 55, No 4 (2024)
- Pages: 78-110
- Section: CATAFLUVIAL EVENTS IN THE QUATERNARY HISTORY OF NORTHERN EURASIA
- URL: https://journals.rcsi.science/2949-1789/article/view/283485
- DOI: https://doi.org/10.31857/S2949178924040069
- EDN: https://elibrary.ru/FGTNSC
- ID: 283485
Cite item
Abstract
A set of geomorphological and geochronological studies was carried out aimed at determining the reasons for the formation of the periglacial Darhad paleolake and the age of the Darhad megafloods (glacial superflood). The main landforms and sedimentary strata from the Darhad Basin to the Western Sayan Ridge, formed in the zone of dynamic influence of the glacial superflood, are characterized. Based on analysis, satellite images, digital elevation model, mapping and reconstruction, new data were obtained on the conditions for the formation of the glacier dam in the valley of the Shishkhid-Gol. The confluence of the large glaciers Khara-Byarangiin-Gol and Ikh-Dzhams-Gol below the mouth of the Tengisiin-Gol formed a backwater of the Shishkhid-Gol with a height of 300 m. The presence of ancient coastlines up to an altitude of 1713 m in the immediate vicinity of the newly identified glacial dam indicates its dominant role in the formation of the Darhad paleolake. Within the Darhad Basin, as a result of an analysis of the absolute heights of the highest coastline of the Darhad paleolake, downward tectonic deformations were revealed over the last 18–23 ka with an amplitude of 27 m. As a result of field research and cosmogenic dating (¹⁰Be), the first dates were obtained for the exposure of boulders within four fields of gravel dunes, as well as an erratic boulder exposed within a bar in the valley of the Kaa-Khem. The age distribution of 14 samples showed a scatter of dates within the range of 38–18 ka, which have three peaks. Two of them correspond to two megafloods of 38–36 ka and 23–18 ka and one, intermediate, associated with intermittent exposure resulting from the impact of a second megaflood on boulder exposure within gravel dunes.
Full Text

About the authors
S. G. Arzhannikov
Institute of the Earth’s Crust SB RAS
Author for correspondence.
Email: sarzhan@crust.irk.ru
Russian Federation, Irkutsk
A. V. Arzhannikova
Institute of the Earth’s Crust SB RAS
Email: sarzhan@crust.irk.ru
Russian Federation, Irkutsk
R. Braucher
French National Centre for Scientific Research (CNRS); Centre européen de recherche et d’enseignement de géosciences de l’environnement (CEREGE)
Email: sarzhan@crust.irk.ru
France, Aix-en-Provence; Aix-en-Provence
References
- Arzhannikov S.G., Arzhannikova A.V. (2011). The Late Quaternary Geodynamics of the Hyargas Nuur Basin and Bordering Scarps (western Mongolia). Russian Geology and Geophysics. V. 52. № 2. P. 220–229. https://doi.org/10.1016/j.rgg.2010.12.016
- Arzhannikov S., Arzhannikova A., Braucher R. (2023). Darhad megaflood (southern Siberia): Сause, age and consequence. Quat. Int. № 643. P. 1–21. https://doi.org/10.1016/j.quaint.2022.10.002
- Arzhannikov S.G., Braucher R., Jolivet M. et al. (2012). History of late Pleistocene glaciations in the central Sayan-Tuva Upland (southern Siberia). Quat. Sci. Rev. V. 49. P. 16–32. ttps://doi.org/10.1016/j.quascirev.2012.06.005
- Arzhannikov S.G., Braucher R., Jolivet M. et al. (2015). Late Pleistocene glaciations in southern East Sayan and detection of MIS 2 terminal moraines based on beryllium (¹⁰Be) dating of glacier complexes. Russian Geology and Geophysics. V. 56. № 11. P. 1509–1521. https://doi.org/10.1016/j.rgg.2015.10.001
- Arzhannikova A.V., Arzhannikov S.G., Akulova V.V. et al. (2014). The Origin of Sand Deposits in the South Minusa Basin. Russian Geology and Geophysics. V. 55. № 10. P. 1183–1194. https://doi.org/10.1016/j.rgg.2014.09.004
- Arzhannikova A.V., Arzhannikov S.G., Chebotarev A.A. (2024). Morphotectonics and paleoseismology of the North Darhad fault (SW Baikal Rift, Mongolia). J. of Asian Earth Sci. V. 259. 105882. https://doi.org/10.1016/j.jseaes.2023.105882
- Bacon S.N., Bayasgalan A., Gillespie A.R. et al. (2003). Paleoseismic displacement measurements from landforms subjected to periglacial processes: observations along the Jarai Gol fault near the Tamyn Am Hills, Darhad Depression, northern Mongolia. XVI Inqua Congress, Abstract with Programs. P. 103.
- Baker V.R. (1973). Paleohydrology and sedimentology of Lake Missoula flooding in Eastern Washington. Geological Society of America. Special Paper. V. 144. P. 1–79. https://doi.org/10.1130/SPE144-p1
- Baker V.R., Benito G., Rudoy A.N. (1993). Paleohydrology of Late Pleistocene superflooding, Altay Mountains, Siberia. Science. V. 259. № 5093. P. 348–350.
- Baker V.R., Bunker R.C. (1985). Cataclysmic late Pleistocene flooding from Glacial Lake Missoula: a review. Quat. Sci. Rev. V. 4. P. 1–41. https://doi.org/10.1016/0277-3791(85)90027-7
- Baryshnikov G.Ya. (1979). On the issue of the formation of large boulder alluvium of the Biy river. In: Materialy Regional’noi nauchno-prakticheskoi konferentsii “Geologiya i poleznye iskopaemye Altaiskogo kraya”. Barnaul. P. 117–119. (in Russ.)
- Batbaatar J., Gillespie A.R. (2016a). Outburst floods of the Maly Yenisei. Part I. Int. Geology Rev. V. 58. Iss. 14. P. 1723–1752. https://doi.org/10.1080/00206814.2015.1114908
- Batbaatar J., Gillespie A.R. (2016b). Outburst floods of the Maly Yenisei. Part II – new age constraints from Darhad basin. Int. Geology Rev. V. 58. Iss. 14. P. 1753-1779. https://doi.org/10.1080/00206814.2016.1193452
- Benito G., Thorndycraft V. (2020). Catastrophic glacial lake outburst flooding of the Patagonian Ice Sheet. Earth-Science Rev. V. 200. 102996. https://doi.org/10.1016/j.earscirev.2019.102996
- Borisov B.A., Minina E.A. (1982). Features of the formation of ribbed main moraines in mountainous countries and their significance for paleoglaciology. Materialy glyatsiologicheskikh issledovanii. V. 44. P. 129–133. (in Russ.)
- Bricheva S. S., Gonikov T. V., Panin A. V. et al. (2022). The origin of giant dunes in the Kuray Basin (Southeastern Gorny Altai) based on morphometric analysis and GPR studies. Geomorfologiya. V. 53. No. 4. P. 25-41. (in Russ.) https://doi.org/10.31857/S0435428122040034
- Chmeleff J., von Blanckenburg F., Kossert K. et al. (2010). Determination of the ¹⁰Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B 268. P. 192–199. https://doi.org/10.1016/j.nimb.2009.09.012
- Clark P., Marshall S., Clarke G. (2001). Freshwater Forcing of Abrupt Climate Change During the Last Glaciation. Science. V. 293. Iss. 5528. P. 283–287. https://www.science.org/doi/epdf/10.1126/science.1062517
- Clarke G., Leverington D., Teller J. et al. (2004). Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat. Sci. Rev. V. 23. Iss. 3-4. P. 389–407. https://doi.org/10.1016/j.quascirev.2003.06.004
- Enikeev F.I. (2009). Pleistocene glaciations of eastern Transbaikalia and south-east of Middle Siberia. Geomorfologiya. № 2. P. 33–49. https://doi.org/10.15356/0435-4281-2009-2-33-49
- Gillespie A.R., Burke R.M., Komatsu G. et al. (2008). Late Pleistocene glaciers in Darhad Basin, northern Mongolia. Quat. Res. V. 69. Iss. 2. P. 169–187. https://doi.org/10.1016/j.yqres.2008.01.001
- Gosse J.C., Phillips F.M. (2001). Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. V. 20. P. 1475–1560. https://doi.org/10.1016/S0277-3791(00)00171-2
- Grosswald M.G., Rudoy A.N. (1996). Quaternary glacial-dammed lakes in the Siberian Mountains. Izvestiya Rossiiskoi Akademii nauk. Seriya geograficheskaya. № 6. P. 112–126. (in Russ.)
- Kleiven H., Kissel C., Laj C. et al. (2008). Reduced North Atlantic Deep-Water Coeval with the Glacial Lake Agassiz Freshwater Outburst. Science. V. 319. № 5859. P. 60–64. https://doi.org/10.1126/science.1148924
- Komatsu G., Arzhannikov S.G., Gillespie A. et al. (2009). Quaternary paleolake formation and cataclysmic flooding along the upper Yenisei River. Geomorphology. V. 104. Iss. 3-4. P. 143–164. https://doi.org/10.1016/j.geomorph.2008.08.009
- Komatsu G., Baker V., Arzhannikov S. (2016). Catastrophic flooding, palaeolakes, and late Quaternary drainage reorganization in northern Eurasia. Int. Geology Rev. V. 58. Iss. 14. P. 1693–1722.https://doi.org/10.1080/00206814.2015.1048314
- Korschinek G., Bergmaier A., Faestermann T. (2010). A new value for the half-life of ¹⁰Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B 268. P. 187–191. https://doi.org/10.1016/j.nimb.2009.09.020
- Kotlyakov V.M., Grosswald M.G. (Eds.). (1987). Vzaimodeistvie oledeneniya s atmosferoi i okeanom. (Interaction of glaciation with the atmosphere and ocean). Moscow: Nauka (Publ.). 250 p. (in Russ.)
- Krivonogov S.K., Sheinkman V.S., Mistryukov A.A. (2005). Stages in the development of the Darhad dammed lake (Northern Mongolia) during the Late Pleistocene and Holocene. Quat. Int. V. 136. Iss. 1. P. 83–94. https://doi.org/10.1016/j.quaint.2004.11.010
- Krivonogov S.K., Yi S., Kashiwaya K., Kim J.C. (2012). Solved and unsolved problems of sedimentation, glaciation and palaeolakes of the Darhad Basin, Northern Mongolia. Quat. Sci. Rev. V. 56. P. 142–163. https://doi.org/10.1016/j.quascirev.2012.08.013
- Kudryavtseva G.A. (Ed). (1964). Geologicheskaya karta SSSR M-46-V, m-ba 1:200 000 (Geological map of the USSR M-46-V, scale 200 000). Leningrad: Fabrika № 9 (Publ.). 1 p.
- Logachev N.A. (Eds.). (1993). Seismotektonika i seismichnost’ Prihubsugul’ya (Seismotectonics and seismicity of the Khubsugul region). Novosibirsk: Nauka (Publ.). 182 p. (in Russ.)
- Margold M., Jannson K., Stroeven A. et al. (2011). Glacial Lake Vitim, a 3000-km3 outburst flood from Siberia to the Arctic Ocean. Quat. Res. V. 73. Iss. 3. P. 393–396. https://doi.org/10.1016/j.yqres.2011.06.009
- Margold M., Jansen J., Codilean A. et al. (2018). Repeated megafloods from Lake Vitim, Siberia, to the Arctic Jcean over the past 60000 years. Quat. Sci. Rev. V. 187. P. 41–61. https://doi.org/10.1016/j.quascirev.2018.03.005
- Martini I.P., Baker V.R., Garzon G. (Eds.). (2002). Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. Int. Association of Sedimentologists. Special Publication. V. 32. Blackwell Science. London. 320 p.
- Norris S.L., Garcia-Castellanos D., Jansen J. D. et al. (2021). Catastrophic drainage from the northwestern outlet of glacial Lake Agassiz during the Younger Dryas. Geophysical Res. Letters. V. 48. Iss. 15. e2021GL093919. https://doi.org/10.1029/2021GL093919
- O’Connor J.E., Costa J.E. (2004). The world’s largest floods, Past and Present: Their causes and magnitudes. U.S. Geological Survey Circular 1254: Reston. VA. U.S. Geological Survey. 13 p.
- Parnachev S.G. (1999). Geologiya vysokikh altaiskikh terras (Yalomano-Katunskaya zona) (Geology of high Altai terraces (Yalomano-Katun zone)). Tomsk: IAP TPU (Publ.). 137 p. (in Russ.)
- Perepelov A.B., Kuzmin M.I., Tsypukova S.S. et al. (2017). Eclogite trace in evolution of late Cenozoic alkaline basalt volcanism on the southwestern flank of the Baikal Rift Zone: geochemical features and geodynamic consequences. Dokl. Earth Sci. V. 476. № 2. P. 1187–1192.https://doi.org/10.1134/S1028334X1710018X
- Rudoy A.N. (1984). The giant current ripples are proof of the catastrophic outbursts of the glacial lakes of the Altay Mountains. In: Sovremennye geomorfologicheskie protsessy na territorii Altaiskogo kraya. Biysk. P. 60–64. (in Russ.)
- Rudoy A.N. (2002). Glacier-dammed lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains. Quat. Int. V. 87. Iss 1. P. 119–140. https://doi.org/10.1016/S1040-6182(01)00066-0
- Rudoy A.N., Baker V.R. (1993). Sedimentary effects of cataclysmic late Pleistocene glacial outburst flooding, Altay Mountains, Siberia. Sediment. Geol. V. 85. Iss. 1-4. P. 53–62. https://doi.org/10.1016/0037-0738(93)90075-G
- Selivanov E.I. (1967). Neogene-Quaternary giant lakes in Transbaikalia and Northern Mongolia. Doklady Akademii nauk SSSR. V. 177. № 1. P. 175–178. (in Russ.)
- Selivanov E.I. (1968). Drained lakes. Priroda. № 3. P. 81–82. (in Russ.)
- Spirkin A.I. (1970). On the ancient lakes of the Darhad Basin. In: Geology of the Mesozoic and Cenozoic of Western Mongolia. Moscow: Nauka (Publ.). P. 143–150. (in Russ.)
- Stolz C., Hülle D., Hilgers A. et al. (2012). Reconstructing fluvial, lacustrine and aeolian process dynamics in Western Mongolia. Zeitschrift für Geomorphologie. V. 56. Iss. 3. P. 267–300. https://doi.org/10.1127/0372-8854/2012/0078
- Stone J.O. (2000). Air pressure and cosmogenic isotope production. J. of Geophysical Res. V. 105. Iss. B10. P. 23753–23759. https://doi.org/10.1029/2000JB900181
- Sugorakova A.M., Yarmolyuk V.V., Lebedev V.I. (2003). Kainozoiskii vulkanizm Tuvy (Cenozoic volcanism of Tuva). Kyzyl: TuvKOPR SO RAN (Publ.). 92 p. (in Russ.)
- Tsypukova S.S., Perepelov A.B., Demonterova E.I. et al. (2022). Two stages of the cenozoic alkaline-basalt volcanism in the Darhad depression (Northern Mongolia) – geochronology, geochemistry, and geodynamic consequences. Geodinamika i tektonofizika. V. 13. № 3. P. 1–15. (in Russ.). https://doi.org/10.5800/GT-2022-13-3-0613
- Uflyand A.K., Ilyin A.V., Spirkin A.I. (1969). Baikal-type depressions in Northern Mongolia. Byulleten' MOIP. Otdel geologicheskii. V. 44. № 6. P. 5–22. (in Russ.)
- Uflyand A.K., Ilyin A.V., Spirkin A.I. et al. (1971). Main features of stratigraphy and conditions for the formation of Cenozoic formations in the Kosogol region (MPR). Byulleten' MOIP. Otdel geologicheskii. V. 46. № 1. P. 54–69. (in Russ.)
- Wagner G.A. (1998). Age determination of young rock and artifacts. Springer. 466 p.
- Zolnikov I.D., Deev E.V. (2013). Glacial superfloods on the territory of the Altai Mountains in the Quaternary period: formation conditions and geological features. Earth’s cryosphere. V. 17. № 4. P. 74–82.
- Zolnikov I.D., Deev E.V., Kurbanov R.N. et al. (2023). Age of glacial and fluvioglacial deposits of the Chibitsky glaciocomplex and its dammed lake (Gorny Altai). Geomorfologiya i Paleogeogragiya. V. 54. № 1. P. 90–98. (in Russ.) https://doi.org/10.31857/S0435428123010133
- Zolnikov I.D., Mistryukov A.A. (2008). Chetvertichnye otlozheniya i rel’ef dolin Chui i Katuni (Quaternary sediments and relief of the Chuya and Katun valleys). Novosibirsk: Parallel (Publ.). 180 c.
- Zolnikov I.D., Novikov I.S., Deev E.V. et al. (2021). Facies composition and stratigraphic position of the quaternary Upper Yenisei sequence in the Tuva and Minusa depression. Geologiya i geofizika. V. 62. № 10. 1127-1138. https://doi.org/10.2113/RGG20204183
- Zolnikov I.D., Novikov I.C., Deev E.V. et al. (2023). The Last Glaciation and Ice-Dammed Lakes in the South-East Altai. Led i Sneg. V. 63. № 4. P. 639-651. (in Russ.) https://doi.org/10.31857/S207667342304018X
Supplementary files
Fig. 5. Overview map of the Late Quaternary glaciation of the mountain frame of the Darhad Basin and the location of key research points within the Darhad paleolake and the Shishkhid-Gol valley, discussed in the text. SRTM V4 data was used to produce the map.
