Experience of applying the cosmogenic dating method (10Be) to assess the age and scale of the Pleistocene Glaciation in North-Eastern Siberia (based on the example of glacier complexes of the Chersky Ridge)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The history of studying glacial complexes in North-Eastern Siberia goes back more than 150 years. During this period, extensive geological and geomorphological features were obtained, which made it possible to determine the stages, nature and extent of glaciations. At the same time, the lack of direct dating of the glacial relief obtained by geochronological methods does not allow for full-fledged paleogeographic reconstructions. This leads to discussions in both Russian and English literature about the possibility of the existence of glaciation in the mountains of North-Eastern Siberia. In this regard, to determine the size and time of glaciation in the southern part of the Chersky Range, we carried out a complex of geomorphological and geochronological studies, which are part of the international project “Searching for the missing ice sheet in Eastern Siberia”. Because of fieldwork in the Ohandya Ridge, in the Malyk-Sien River valley, three terminal moraine ridges have been identified, reflecting different stages of glaciation. Based on the dating of exposed boulders within three terminal moraine complexes, 22 10Be cosmogenic dates were obtained. The average exposed age for the outer moraine is 120.8±13.7 ka, for the middle one North-Eastern 37.7±4.9 ka and for the internal moraine North-Eastern 13.8±2.2 ka. The age of the terminal moraine complexes testifies to the mountain-valley character of the glaciation of the Chersky Range in the Middle and Late Pleistocene, and emphasizes the trend towards a gradual decrease in the maximum length of glaciers in Northeast Asia. The successive reduction of glaciers from MIS 6 to MIS 2 indicates an increase in the deficit of atmospheric precipitation and a significant cryoaridization of the region. The decreasing trend may be related to the sharply continental conditions observed in the interior of Eurasia and western North America. This trend contrasts with much of the glaciated areas in the Northern Hemisphere, where the maximum area of Late Pleistocene glaciers is reconstructed for LGM time (MIS 2). The obtained datings of the glacial complexes of the Chersky Ridge confirm that at the end of the Middle and Late Pleistocene glaciations here were of a limited nature and there was no single ice cover in the mountains.

Full Text

Restricted Access

About the authors

S. G. Arzhannikov

Institute of the Earth’s Crust of the SB RAS

Author for correspondence.
Email: sarzhan@crust.irk.ru
Russian Federation, Irkutsk

A. V. Arzhannikova

Institute of the Earth’s Crust of the SB RAS

Email: sarzhan@crust.irk.ru
Russian Federation, Irkutsk

A. A. Chebotarev

Institute of the Earth’s Crust of the SB RAS

Email: sarzhan@crust.irk.ru
Russian Federation, Irkutsk

N. V. Torgovkin

Institute of Permafrost Science of the SB RAS

Email: sarzhan@crust.irk.ru
Russian Federation, Yakutsk

D. V. Semikolennykh

Lomonosov Moscow State University

Email: sarzhan@crust.irk.ru
Russian Federation, Moscow

M. S. Lukyanycheva

Institute of Geography of the RAS

Email: sarzhan@crust.irk.ru
Russian Federation, Moscow

R. N. Kurbanov

Lomonosov Moscow State University; Institute of Geography of the RAS

Email: sarzhan@crust.irk.ru
Russian Federation, Moscow; Moscow

References

  1. Anan’ev G.S., Anan’eva E.G., Pakhomov A.Yu. (1984). Quaternary glaciations of the north-western Okhotsk region. In: Pleistotsenovye oledeneniya Vostoka Azii. Magadan. P. 43–56. (in Russ.)
  2. Anan’ev G.S., Smirnova T.I., Anan’eva E.G. et al. (1982). Genesis and age of Quaternary deposits of the North-Western Okhotsk region. In: Chetvertichnye otlozheniya vostoka SSSR. Preprint. Magadan. P. 7–10. (in Russ.)
  3. Applegate P.J., Urban N.M., Laabs B.J. et al. (2010). Modeling the statistical distributions of comsogenic exposure dates from moraines. Geoscientific Model Development. V. 3. P. 293–307. https://doi.org/10.5194/gmd-3-293-2010
  4. ArcticDEM – Polar Geospatial Center [Electronic data]. Access way: https://www.pgc.umn.edu/data/arcticdem/ (access date: 07.04.2023).
  5. Arkhipov S.A. (1983). Correlation of Quaternary glaciations of Siberia and the Northeast. In: Oledeneniya i paleoklimaty Sibiri v pleistotsene. Novosibirsk. P. 4–18. (in Russ.)
  6. Astakhov V., Shkatova V., Zastrozhnov A. et al. (2016). Glaciomorphological Map of the Russian Federation. Quat. Int. V. 420. P. 4–14. https://doi.org/10.1016/j.quaint.2015.09.024
  7. Balco G., Stone J.O., Lifton N.A. et al. (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronology. V. 3. № 3. P. 174–195. https://doi.org/10.1016/j.quageo.2007.12.001
  8. Barr I.D., Clark C.D. (2012). Late Quaternary glaciations in Far NE Russia; combining moraines, topography and chronology to assess regional and global glaciation synchrony. Quat. Sci. Rev. V. 53. P. 72–87. https://doi.org/10.1016/j.quascirev.2012.08.004
  9. Batbaatar J., Gillespie A.R., Fink D. et al. (2018). Asynchronous glaciations in arid continental climate. Quat. Sci. Rev. V. 182. P. 1–19. https://doi.org/10.1016/j.quascirev.2017.12.001
  10. Bennett M.R. (2001). The morphology, structural evolution and significance of push moraines. Earth-Science Rev. V. 53. 197e236. https://doi.org/10.1016/S0012-8252(00)00039-8
  11. Blomdin R., Heyman J., Stroeven A.P. et al. (2016). Glacial geomorphology of the Altai and Western Sayan Mountains, Central Asia. J. of Maps. V. 12. № 1. P. 123–136. https://doi.org/10.1080/17445647.2014.992177
  12. Blomdin R., Stroeven A., Harbor J. et al. (2018). Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia. Quat. Geochronology. V. 47. P. 54–71. https://doi.org/10.1016/j.quageo.2018.05.008
  13. Brigham-Grette J., Gualtieri L.M., Glushkova O.Yu. et al. (2003). Chlorine-36 and C-14 chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet. Quat. Res. V. 59. № 3. P. 386–398. https://doi.org/10.1016/s0033-5894(03)00058-9
  14. Briner J.P., Kaufman D.S. (2008). Late Pleistocene Mountain glaciation in Alaska: key chronologies. J. of Quat. Sci. V. 23. № 6–7. P. 659–670. https://doi.org/10.1002/jqs.1196
  15. Chanysheva M., Bredikhin A.V. (1981). On the boundary of Pleistocene glaciations in the upper and middle area of the Kolyma River. Geomorphology. № 3. P. 97–103. (in Russ.)
  16. Degtyarenko Yu.P. (1984). The scale of modern and Quaternary glaciations of the Koryak Highlands and Eastern Chukotka. In: Pleistotsenovye oledeneniya Vostoka Azii. Magadan. P. 66–76. (in Russ.)
  17. Fabel D., Harbor J. (1999). The use of in-situ produced cosmogenic radionuclides in glaciology and glacial geomorphology. Annals of Glaciology. V. 28. P. 103–110. https://doi.org/10.3189/172756499781821968
  18. Galanin A.A. (2012). Age of the Last Glacial Maximum in Northeast Asia. Kriosfera Zemli. V. 16. № 3. P. 39–52. (in Russ.)
  19. Galanin A.A., Glushkova O.Yu. (2006). Glaciations, climate and vegetation of the Taui Bay (Northern Okhotsk region) in the late Quaternary. Geomorfologiya. № 2. P. 50–61. (in Russ.)
  20. Gillespie A.R., Burke R.M., Komatsu G. et al. (2008). Late Pleistocene glaciers in Darhad Basin, northern Mongolia. Quat. Res. V. 69. P. 169–187. https://doi.org/10.1016/j.yqres.2008.01.001
  21. Glushkova O.Yu. (1984). Morphology and paleogeography of the Late Pleistocene glaciations of the northeast of the USSR. In: Pleistotsenovye oledeneniya Vostoka Azii. Magadan. P. 28–42. (in Russ.)
  22. Glushkova O.Yu. (2011). Late Pleistocene glaciations in north-east Asia. Developments in Quat. Sci. V. 15. P. 865–875. https://doi.org/10.1016/B978-0-444-53447-7.00063-5
  23. Glushkova O.Yu., Gualtieri L. (1998). Features of the Late Quaternary glaciation of the northern part of the Koryak Highlands In: Izmenenie prirodnoi sredy Beringii v chetvertichnyi period. Magadan: SVNTS DVO RAN (Publ.). P. 112–132. (in Russ.)
  24. Gol’dfarb Yu.I. (1972). In the Berelekh River five Pleistocene glaciations. Materialy po geologii i poleznym iskopaemym severo-vostoka SSSR. Magadan: Magadanskoe knizhnoe izdatel’stvo. (Publ.) S. 225–242.
  25. Google Earth PRO [Electronic data]. Access way: https://www.google.com/intl/ru_ALL/earth/versions (access date: 07.04.2023).
  26. Gosse J.C., Phillips F.M. (2001). Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. V. 20. P. 1475–1560. https://doi.org/10.1016/S0277-3791(00)00171-2
  27. Grishchenko Sh.G., Pavlova N.P. (Eds.). (2020). Karta chetvertichnykh obrazovanii (P-55-IV) m-ba 1 : 200 000 (Map of Quaternary formations (P-55-IV) on a scale of 1 : 200 000). VSEGEI. 1 l. (in Russ.)
  28. Grosswald M.G., Hughes T.J. (2002). The Russian component of an Arctic ice sheet during the Last Glacial Maximum. Quat. Sci. Rev. V. 21. №. 1–3. P. 121–146. https://doi.org/10.1016/S0277-3791(01)00078-6
  29. Gualtieri L., Glushkova O.Yu., Brigham-Grette J. (2000). Evidence for restricted ice extent during the last glacial maximum in the Koryak Mountains of Chukotka, far eastern Russia. GSA Bulletin. V. 112. P. 1106–1118. https://doi.org/10.1130/0016-7606(2000)112<1106:EFRIED>2.0.CO;2
  30. Heyman J., Applegate P. J., Blomdin R. et al. (2016). Boulder height – exposure age relationships from a global glacial 10Be compilation. Quat. Geochronology. V. 34. P. 1–11. https://doi.org/10.1016/j.quageo.2016.03.002
  31. Heyman J., Stroeven A. P., Harbor J. M. et al. (2011). Too young or too old: Evaluating cosmogenic exposure dating based on analysis of compiled boulder exposure ages. Earth and Planetary Scie. Letters. V. 302. P. 71–80. https://doi.org/https://doi.org/10.1016/j.epsl.2010.11.040
  32. Hidy A.J., Gosse J.C., Froese D.G. et al. (2013). A latest Pliocene age for the earliest and most extensive Cordilleran Ice Sheet in northwestern Canada. Quat. Sci. Rev. V. 61. P. 77–84. https://doi.org/10.1016/j.quascirev.2012.11.009
  33. Ivanov V.F. (1984). Quaternary glaciations of Eastern Chukotka. In: Pleistotsenovye oledeneniya Vostoka Azii. Magadan. P. 77–89. (in Russ.)
  34. Jansen J.D., Knudsen M.F., Andersen J.L. et al. (2019). Erosion rates in Fennoscandia during the past million years. Quat. Sci. Rev. V. 207. P. 37–48. https://doi.org/10.1016/j.quascirev.2019.01.010
  35. Kaufman D.S., Manley W.F. (2004). Pleistocene Maximum and Late Wisconsinan glacier extents across Alaska, U.S.A. Developments in Quat. Sci. V. 2. P. 9–27.
  36. Khvorostova Z.M. (1965). Quaternary glaciation of the mountainous part of the Indigirka and Kolyma River basins. In: Osnovnye problemy izucheniya chetvertichnogo perioda. M.: Nauka (Publ.). P. 272–276. (in Russ.)
  37. Kind N.V. (1975). Glaciations of the Verkhoyansk Mountains and their position in the absolute geochronological scale of the Upper Anthropocene of Siberia. In: Paleogeografiya i periglyatsial,nye yavleniya pleistotsena. M.: Nauka (Publ.), P. 124–132. (in Russ.)
  38. Kolpakov V.V. (1979). Glacial and perglacial relief of the Verkhoyansk glacial region and new radiocarbon data. In: Regional’naya geomorfologiya raionov novogo osvoeniya. M.: MFGO USSR (Publ.). P. 83–98. (in Russ.)
  39. Krinner G., Diekmann B., Colleoni F. et al. (2011). Global, regional and local scale factors determining glaciation extent in Eastern Siberia over the last 140,000 years. Quat. Sci. Rev. V. 30. № 7–8. P. 821–831. https://doi.org/10.1016/j.quascirev.2011.01.001
  40. Kropotkin P.A. (1873). Report on the Olekma-Vitim expedition to find a cattle route from the Nerchinsk district to Olekminsky, equipped in 1866. Zapiski Russkogo geograficheskogo obshchestva po obshchei geografii. V. 3. 681 p.
  41. Lisiecki L.E., Raymo M.E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. V. 20. Iss. 1. PA1003. https://doi.org/10.1029/2004pa001071
  42. Löfverström M., Caballero R., Nilsson J. et al. (2014). Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle. Climate of the Past. V.10. № 4. P. 1453–1471. https://doi.org/10.5194/cp-10-1453-2014
  43. Margold M., Jansen J. D., Gurinov A. L. et al. (2016). Extensive glaciation in Transbaikalia, Siberia, at the Last Glacial Maximum. Quat. Sci. Rev. V. 132. P. 161–174. https://doi.org/10.1016/j.quascirev.2015.11.018
  44. Morin P., Porter C., Cloutier M. et al. (2016). ArcticDEM; a publically available, high resolution elevation model of the Arctic. EGU General Assembly, held 17–22 April, in Vienna Austria, id. EPSC2016-8396.
  45. Onishchenko B.A. (1965). New data on the problem of Quaternary glaciation in the northeast of the USSR (using the example of the Chersky mountain system). In: Osnovnye problemy izucheniya chetvertichnogo perioda. M.: Nauka (Publ.). P. 123–128. (in Russ.)
  46. Putkonen J., O’Neal M. (2006). Degradation of unconsolidated quaternary landforms in the western North America. Geomorphology. V. 75. P. 408–419. https://doi.org/10.1016/j.geomorph.2005.07.024
  47. Putkonen J., Swanson T. (2003). Accuracy of cosmogenic ages for moraines. Quat. Res. V. 59. № 2. P. 255–261. https://doi.org/10.1016/s0033-5894(03)00006-1
  48. Sheinkman V.S. (2008). Quaternary glaciation in the Siberian mountains as a result of the interaction of glacial and permafrost processes. Materialy glyatsiologicheskikh issledovanii. V. 105. P. 51–74. (in Russ.)
  49. Shilo N.A., Lozhkin A.V., Anderson P.M. et al. (2005). New radiocarbon and paleobotanical data on the development of glacial lakes in Chukotka. DAN. V. 404. № 5. P. 687–689. (in Russ.)
  50. Simms A. R., Lisiecki L., Gebbie G. et al. (2019) Balancing the last glacial maximum (LGM) sea-level budget. Quat. Sci. Rev. V. 205. P. 143–153. https://doi.org/10.1016/j.quascirev.2018.12.018
  51. Stauch G., Gualtieri L. (2008). Late Quaternary glaciations in northeastern Russia. J. of Quat. Sci. Published for the Quat. Res. Association. V. 23. № 6–7. P. 545–558. https://doi.org/10.1002/jqs.1211
  52. Stauch G., Lehmkuhl F. (2010). Quaternary glaciations in the Verkhoyansk Mountains, Northeast Siberia. Quat. Res. V. 74. № 1. P. 145–155. https://doi.org/10.1016/j.yqres.2010.04.003
  53. Stauch G., Lehmkuhl F., Frechen M. (2007). Luminescence chronology from the Verkhoyansk Mountains (North-Eastern Siberia). Quat. Geochronology. V. 2. № 1–4. P. 255–259. https://doi.org/10.1016/j.quageo.2006.05.013
  54. Svendsen J.I., Alexanderson H., Astakhov V.I. et al. (2004). Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. V. 23. № 11–13. P. 1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008
  55. Velichko A.A. (1991). Correlation of late Pleistocene events in glacial regions of the northern hemisphere. Byulleten’ komissii po izucheniyu chetvertichnogo perioda. № 60. P. 14–28. (in Russ.)
  56. Verkhovskaya N.B. (1986). Pleistotsen Chukotki. Palinostratigrafiya i osnovnye paleogeograficheskie sobytiya. (Pleistocene of Chukotka. Palinostratigraphy and major paleogeographic events) Vladivostok: DVNTS AN SSSR (Publ.). 116 p. (in Russ.),
  57. Voskresensky S.S., Chanysheva M.N., Voskresensky I.S. et al. (1984). Pleistocene glaciations of the Kolyma area. In: Pleistotsenovye oledeneniya Vostoka Azii. Magadan. P. 57–65. (in Russ.)
  58. Wagner G. (1988). Age Determination of Young Rocks and Artifacts. Springer. 466 p.
  59. Ward B.C., Bond J.D., Gosse J.C. (2017). Evidence for a 55–50 ka (early Wisconsin) glaciation of the Cordilleran ice sheet, Yukon Territory, Canada. Quat. Res. V. 68. № 1. P. 141–150. https://doi.org/10.1016/j.yqres.2007.04.002
  60. Zamoruev V.V. (1976). “The main climatic boundary of the Pleistocene” and mountain glaciation of Eastern Siberia and the North-East of the USSR. News of the Russian Geographical Society. V. 110. Iss. 1. P. 16–21. (in Russ.)
  61. Zamoruev V.V. (1978). Quaternary glaciation of the Allah-Yun region (Southern Verkhoyansk). News of the Russian Geographical Society. V. 110. Iss. 2. P. 135–142. (in Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) – Location of the study area on the overview map (highlighted with a red square) and (б) – Malyk-Sien River valley and Ohandya Ridge

Download (225KB)
3. Fig. 2. The nature and area of glacial deposits distribution in the study area and in adjacent territories (Goldfarb, 1972). Glacial deposits are shown in orange. The red dotted line marks the axial part of the terminal moraines in the Malyk-Sien River valley

Download (309KB)
4. Fig. 3. Selection of relatively high and stable boulders and their sampling for exposure dating (tab. 1). Boulders located within: (a), (б), (в) – the outer moraine, (г) – the middle moraine, (д), (е) – the inner moraine

Download (1MB)
5. Fig. 4. Fragment of the Malyk-Sien River valley with terminal moraines and sampling locations (red dots) with the exposure ages of moraine boulders. The lower part of the figure shows a longitudinal topographic profile with terminal moraine ridges and heights of the sampling sites. The red arrow on the outer moraine indicates the key samples MS-M15B-1, MS-M15B-2 and MS-M15B-3, whose position was more stable during the post-depositional period

Download (693KB)
6. Fig. 5. Probability density plot of cosmogenic ages for outer, middle and inner moraines. Colored rectangles correspond to the color of the moraines in fig. 4 and reflect the range of ages accepted as the most reliable. The photograph shows western shore of Lake Malyk. Black arrows indicate the level of marginal moraines formed during different stages of the Middle and Late Pleistocene. The white arrow marks moraine deposits of MIS 2

Download (217KB)
7. Fig. 6. Dating results: rectangles of different colors show age of the boulders, taking into account the 1–σ error for the outer (green), middle (orange) and inner (brown) moraines. The tone corresponds to the most probable age of the moraine (green – outer moraine, orange – middle, dark purple – inner). On the marine isotope scale (Lisiecki, Raymo, 2005), blue and blue colors indicate the stages of glaciation (the numbers in brackets reflect the boundaries of the MIS). The lowest panel is a visualization of the expected stages (MIS 6 – MIS 2) of maximum glacier advance in the Malyk-Sien River valley

Download (185KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».