Stratigraphy, chronology and paleogeography of Late Quaternary cryogenesis in Northern Caspian Lowland

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article presents a generalization of the results of field and analytical studies of cryogenic phenomena in the Lower Volga region. For the first time for this territory, pseudomorphs, soil wedges and cryoturbations were described and studied in detail. Their cryogenic genesis was substantiated. In the Lower Volga region, various structures have been identified in loess-soil series, alluvial and marine deposits. The development of cryogenesis in similar environmental conditions, but in different genetic types of sediments, leads to the formation of structures of different shapes, which directly depends on the humidity and composition of the sediments. The processes of ice degradation and accompanying changes in their morphology are of decisive importance in the final appearance of soil structures. Absolute dating of the deposits containing cryogenic structures made it possible to identify the time intervals of their formation. Six stages of cryogenesis in the Late Pleistocene were identified based on the structural features, their stratigraphic position, and the results of laboratory analyzes. Stage I is characterized by the spread of deep seasonal freezing in the region, recorded in coastal marine sediments in MIS 5d. For stages II-III (MIS 5b, MIS 4, respectively), the existence of a perennial permafrost zone is reconstructed, cryogenic forms are recorded in various genetic types of sediments. Stage IV (MIS 3c – MIS 3b) corresponds to the existence of a perennial permafrost zone only for the northern part of the region (Srednyaya Akhtuba and Raygorod sections) and thin sporadic permafrost or deep seasonal freezing for the southern part of the Volga River valley (Chernyy Yar section). Stages V (MIS 3a) and VI (MIS 2) are characterized by the spread of thin sporadic permafrost or deep seasonal freezing. The identified major stages of the development of permafrost in the Caspian Lowland significantly refine the available data on the cryogenic horizons of the East European Plain.

全文:

受限制的访问

作者简介

N. Taratunina

Lomonosov Moscow State University; Institute of Geography of the RAS

编辑信件的主要联系方式.
Email: taratuninana@gmail.com
俄罗斯联邦, Moscow; Moscow

V. Rogov

Lomonosov Moscow State University

Email: taratuninana@gmail.com
俄罗斯联邦, Moscow

M. Lebedeva

Lomonosov Moscow State University; Dokuchaev Soil Science Institute of the RAS

Email: taratuninana@gmail.com
俄罗斯联邦, Moscow; Moscow

I. Streletskaya

Lomonosov Moscow State University

Email: taratuninana@gmail.com
俄罗斯联邦, Moscow

T. Yanina

Lomonosov Moscow State University

Email: taratuninana@gmail.com
俄罗斯联邦, Moscow

M. Lukyanycheva

Institute of Geography of the RAS

Email: taratuninana@gmail.com
俄罗斯联邦, Moscow

F. Khormali

Gorgan University of Agricultural Sciences and Natural Resources

Email: taratuninana@gmail.com
伊朗伊斯兰共和国, Gorgan

R. Kurbanov

Lomonosov Moscow State University; Institute of Geography of the RAS

Email: taratuninana@gmail.com
俄罗斯联邦, Moscow; Moscow

参考

  1. Astakhov V., Shkatova V., Zastrozhnov A., Chuyko M. (2016) Glaciomorphological Map ofthe Russian Federation. Quat. Int. V. 420. P. 4–14. https://doi.org/10.1016/j.quaint.2015.09.024
  2. Badyukova E.N. (2021). Caspian Sea Level Fluctuations in the Neopleistocene (Was There an Atelian Regression?). Oceanology. V. 61. № 2. P. 283–291. https://doi.org/10.1134/S0001437021010021
  3. Berdnikov V.V. (1976). Paleokriogennyi mikrorel’ef tsentra Russkoi ravniny (Paleo-cryogenic microrelief of the center of the Russian Plain). Moscow: Nauka (Publ.). 126 p. (in Russ.)
  4. Butuzova E.A., Kurbanov R.N., Taratunina N.A. et al. (2022). Shedding light on the timing of the largest Late Quaternary transgression of the Caspian Sea. Quat. Geochronology. V. 73. P. 101378. https://doi.org/10.1016/j.quageo.2022.101378
  5. Buylaert J.P., Ghysels G., Murray A.S. et al. (2009). Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium. Boreas. V. 38. № 1. P. 160–175. https://doi.org/10.1111/j.1502-3885.2008.00037.x
  6. Buylaert J.P., Jain M., Murray A.S. et al. (2012). A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas. V. 41. Iss. 3. P. 435–451. https://doi.org/10.1111/j.1502-3885.2012.00248.x
  7. Chepalyga A.L. (2006). The era of extreme flooding in the arid zone of Northern Eurasia. In: Pozdnekainozoiskaya geologicheskaya istoriya severa aridnoi zony. Materialy mezhdunarodnogo simpoziuma. Rostov-na-Donu/Azov. 26–29 sentyabrya 2006 g. Rostov-na-Donu: YuNTs RAN (Publ.). P. 166–171. (in Russ.)
  8. Ewertowski M. (2009). Ice-wedge Pseudomorphs and Frost-cracking Structures in Weichselian Sediments, Central-West Poland. Permafrost and Periglacial Processes. V. 20. Iss. 4. P. 316–330. https://doi.org/10.1002/ppp.657
  9. French H.M., Demitroff M., Forman S.L. (2003). Evidence for Late Pleistocene Permafrost in the New Jersey Pine Barrens (latitude 39° N), eastern USA. Permafrost and Periglacial Processes. V. 14. Iss. 3. P. 259–274. https://doi.org/10.1002/ppp.456
  10. Garankina E.V., Lobkov V. A., Shorkunov I.G., Belyaev V.R. (2022). Identifying relict periglacial features in watershed landscape and deposits of Borisoglebsk Upland, Central European Russia. J. Geol. Soc. V. 179. № 5. https://doi.org/10.1144/jgs2021-135
  11. Gelfan A.N., Kalugin A.S. (2021). Permafrost in the Caspian Basin as a Possible Trigger of the Late Khvalynian Transgression: Testing Hypothesis Using a Hydrological Model. Water Resources. V. 48. № 6. P. 831–843. https://doi.org/10.1134/S0097807821060063
  12. Gelfan A., Panin A., Kalugin A. et al. (2024). Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments. Hydrology and Earth System Sciences. V. 28. P. 241–259. https://doi.org/10.5194/hess-28-241-2024
  13. Guhl A., Bertran P., Zielhofer C., Fitzsimmons K.E. (2012). Optically Stimulated Luminescence (OSL) dating of sand-filled wedge structures and their fine-grained host sediment from Jonzac, SW France. Boreas. V. 42. Iss. 2. P. 317–332. https://doi.org/10.1111/j.1502-3885.2012.00270.x
  14. Költringer C., Bradák B., Stevens T. et al. (2021). Palaeoenvironmental implications from Lower Volga loess – Joint magnetic fabric and multi-proxy analyses. Quat. Sci. Rev. V. 267. 107057. https://doi.org/10.1016/j.quascirev.2021.107057
  15. Költringer C., Stevens T., Bradák B. et al. (2020). Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia. Quat. Res. V. 103. P. 49–73. https://doi.org/10.1017/qua.2020.73
  16. Költringer C., Stevens T., Linder M. et al. (2022). Quaternary sediment sources and loess transport pathways in the Black Sea – Caspian Sea region identified by detrital zircon U-Pb geochronology. Global and Planetary Change. V. 209. № 2. 103736. https://doi.org/10.1016/j.gloplacha.2022.103736
  17. Kovda I.V. (2022). Common Macro- and Microfeatures of Vertisols and Cryosols. Eurasian Soil Science. V. 55. № 10. P. 1335–1347. https://doi.org/10.1134/S1064229322100088
  18. Konishchev V.N. (1998). Vzaimosvyaz’ sostava i temperatury kriogennykh pochv i gruntov (Relationship between the composition and temperature of cryogenic soils). Vestnik Mosk. Un-ta. Seriya 5. Geografiya. № 3. P. 9–14. (in Russ.)
  19. Kurbanov R., Murray A., Thompson W. et al. (2021). First reliable chronology for the early Khvalynian Caspian Sea transgression in the Lower Volga River valley. Boreas. V. 50. № 1. P. 134–146. (in Russ.). https://doi.org/10.1111/bor.12478
  20. Kurbanov R.N., Belyaev V.R., Svistunov M.I. et al. (2023). New data on the age of the Early Khvalynian transgression of the Caspian Sea. Izvestiya RAN. Seriya geograficheskaya. V. 87. № 3. P. 403–419. https://doi.org/10.31857/S2587556623030081
  21. Kurbanov R.N., Buylaert J.-P., Stevens T. et al. (2022). A detailed luminescence chronology of the Lower Volga loess-palaeosol sequence at Leninsk. Quat. Geochronology. V. 73. 101376. https://doi.org/10.1016/j.quageo.2022.101376.
  22. Leszczynski S., Nemec W. (2020). Sedimentation in a synclinal shallow‐marine embayment: Coniacian of the North Sudetic Synclinorium, SW Poland. The Depositional Reccord. № 6. Iss. 1. P. 44-171. https://doi.org/10.1002/dep2.92
  23. Makeev A., Lebedeva M., Kaganova A. et al. (2021). Pedosedimentary environments in the Caspian Lowland during MIS 5 (Srednaya Akhtuba reference section, Russia). Quat. Int. V. 590. P. 164–180.
  24. Makeev O.V. (2019). Kriologiya pochv (Soil cryology). Moscow: RAN (Publ.). 464 p. (in Russ.)
  25. Moskvitin A.I. (1962). Pleistotsen nizhnego Povolzhʹya (Pleistocene of the Lower Volga region). Moscow: AN SSSR (Publ.). 263 p. (in Russ.)
  26. Murray A.S., Marten R., Johnston A., Martin P. (1987). Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. J. Radioanal. Nucl. Chem. V. 115. № 2. P. 263–288.
  27. Naugol’nykh S.V. (2018). Paleosols of the Upper Pleistocene from the vicinity of the city of Ramenskoye (Moscow region), their structure and possible interpretation. Byulleten’ Komissii po izucheniyu chetvertichnogo perioda. № 76. P. 86–98. (in Russ.)
  28. Railsback L.B., Gibbard P.L., Head M.J. et al. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quat. Sci. Rev. V. 111. P. 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012
  29. Rogov V.V., Streletskaya I.D., Taratunina N.A. et al. (2020). Late Pleistocene cryogenesis in the Lower Volga River region. Vestnik Mosk. Un-ta. Seriya 5. Geografiya. № 6. P. 73–85. (in Russ.)
  30. Rozenbaum G.E. (1985). Cover paleocryogenic complex in the north of the Valdai periglacial zone. In.: Razvitie kriolitozony Evrazii v verkhnem kainozoe. Moscow: Nauka (Publ.). P. 4–15. (in Russ.)
  31. Ryabukha A.G. (2015). Peculiarities of morphology and patterns of distribution of late Pleistocene eolian landforms of the Trans-Ural-Caspian region. Byulleten’ Orenburgskogo nauchnogo tsentra UrO RAN. № 4. P. 1–18. (in Russ.)
  32. Ryabukha A.G. (2019). Heritage of the Pleistocene cryolithozone in the landscapes of the Zavolzhsko-Ural region. Uspekhi sovremennogo estestvoznaniya. № 10. P. 164–170. (in Russ.)
  33. Serebryannyy L.R. (1960). Periglacial formations in southern Scandinavia. In.: Periglyatsial’nye yavleniya na territorii SSSR. P. 267–275. Moscow: MGU (Publ.). (in Russ.)
  34. Sergeev E.M., Minervin A.V. (1960). The essence of the process of loess formation in the podzolic zone. Vestnik Mosk. Un-ta. Seriya 4. Geologiya. № 3. P. 3–14. (in Russ.)
  35. Shkatova V.K. (1975). Stratigrafiya pleistotsenovykh otlozhenii nizovʹev rek Volgi i Urala i ikh korrelyatsiya (Stratigraphy of Pleistocene deposits in the lower reaches of the Volga and Ural rivers and their correlation). PhD Thesis. Leningrad: VSEGEI. 25 p. (in Russ.)
  36. Sidorchuk A.Yu., Panin A.V., Borisova O.K. (2008). Climate-induced changes in surface runoff on the North-Eurasian plains during the Late Glacial and Holocene. Water Resources. V. 35. P. 386–396. https://doi.org/10.1134/S0097807808040027
  37. Sidorchuk A.Yu., Ukraintsev V.Yu., Panin A.V. (2021). Estimating Annual Volga Runoff in the Late Glacial Epoch from the Size of River Paleochannels. Water Resources. V. 48. № 6. P. 864–876. https://doi.org/10.1134/S0097807821060178
  38. Sidorchuk A., Panin A., Borisova O. (2024). Hydrological Regime of Rivers in the Periglacial Zone of the East European Plain in the Late MIS 2. Quaternary. 7. 32. https://doi.org/10.3390/quat7030032
  39. Starkel L. (1988). Paleogeography of the periglacial zone in Poland during the maximum advance of the Vistulian ice sheet. Geogr. Pol. V. 55. P. 151–163.
  40. Streletskaya I.D. (2017). Soil wedge structures in the Southern coast of the Finland gulf. Earth’s Cryosphere. V. 21. № 1. P. 3–10. (in Russ.) https://doi.org/10.21782/EC2541-9994-2017-1(3-10)
  41. Svitoch A.A. (2014). Bol’shoi Kaspii: stroenie i istoriya razvitiya (Big Caspian: structure and history of development). Moscow: MSU (Publ.). 272 p. (in Russ.)
  42. Sycheva S.A. (2012). Paleocryogenic events in periglacial area of the Central Russian Upland at the end of the Middle and Late Pleistocene. Earth’s Cryosphere. V. 16. № 4. P. 45–56. (in Russ.)
  43. Taratunina N.A. (2022). Pozdnepleistotsenovyi kriogenez v Nizhnem Povolzh’e: Usloviya i khronologiya etapov razvitiya (Late Pleistocene cryogenesis in the Lower Volga region: conditions and chronology of development stages). PhD. M.: MSU. 169 p. (in Russ.)
  44. Taratunina N., Rogov V., Streletskaya I. et al. (2021). Late Pleistocene cryogenesis features of a loess-paleosol sequence in the Srednyaya Akhtuba reference section, Lower Volga River valley, Russia. Quat. Int. V. 590. P. 56–72. https://doi.org/10.1016/j.quaint.2020.12.015
  45. Taratunina N.A., Buylaert J.-P., Kurbanov R.N. et al. (2022). Late Quaternary evolution of lower reaches of the Volga River (Raygorod section) based on luminescence dating. Quat. Geochronology. V. 72. 101369. https://doi.org/10.1016/j.quageo.2022.101369
  46. Taratunina N.A., Rogov V.V., Streletskaya I.D. et al. (2023). Chronology and development of cryogenesis in loess-paleosol sequence in the Lower Volga Region. Geomorfologiya i Paleogeografiya. V. 54. № 3. P. 49–66. (in Russ.). https://doi.org/10.31857/S2949178923030118
  47. Taratunina N.A., Rogov V.V., Streletskaya I.D. et al. (2024). New data on the age and evolution of the Late Pleistocene cryogenesis in the Southern Caspian Lowland. Geomorfologiya i Paleogeografiya. V. 55. № 2. Р. 191–206. (in Russ.) https://doi.org/10.31857/S2949178924020107
  48. Timofeev D.A., Vtiurina E.A. (1983). Terminologiya periglatsial’noi geomorfologii (Terminology of periglacial geomorphology). Moscow: Nauka (Publ). 233 p.
  49. Vandenberghe J., French H.M., Gorbunov A. et al. (2014). The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25-17 ka BP. Boreas. V. 43. № 3. P. 652–666. https://doi.org/10.1111/bor.12070
  50. Vandenberghe J., Pissart A. (1993). Permafrost changes in Europe during the last glacial. Permafrost and Periglacial Processes. Iss. 2. № 4. P. 121–135. https://doi.org/10.1002/ppp.3430040205
  51. Vasil’yev Yu.M. (1961). Antropogen Yuzhnogo Zavolzhʹya (Anthropogen of the Southern Trans-Volga region). Moscow: Izd-vo AN SSSR (Publ.). 128 p. (in Russ.)
  52. Velichko A.A. (1965). Cryogenic relief of the periglacial zone (cryolithozone) of the Russian Plain. In: Chetvertichnyi period i ego istoriya. Moscow: Nauka (Publ.). P. 104–120. (in Russ.)
  53. Velichko A.A. (1973). Prirodnyi protsess v pleistotsene (Natural process in the Pleistocene). Moscow: Nauka (Publ.). 256 p. (in Russ.)
  54. Velichko A.A. (2012). Evolyutsionnaya geografiya: problemy i resheniya (Evolutionary geography: problems and solutions). Moscow: GEOS (Publ.). 564 p. (in Russ.)
  55. Velichko A.A. (Ed.). (1999). Izmenenie klimata i landshaftov za poslednie 65 millionov let (kainozoi: ot paleotsena do golotsena) (Changes in climate and landscapes over the past 65 million years (Cenozoic: from the Paleocene to the Holocene)). Moscow: GEOS (Publ.). 260 p. (in Russ.)
  56. Velichko A.A. (Ed.). (2002). Dinamika landshaftnykh komponentov i vnutrennikh morskikh basseinov Severnoi Evrazii za poslednie 130 000 let (Dynamics of landscape components and inland marine basins of Northern Eurasia over the past 130,000 years). Moscow: GEOS (Publ.). 296 p. (in Russ.)
  57. Velichko A.A., Borisova O.K., Kononov Yu.M. et al. (2017). Rekonstruktsiya sobytii pozdnego pleistotsena v periglyatsial’noi zone yuga Vostochno-Evropeiskoi ravniny (Reconstruction of Late Pleistocene events in the periglacial zone of the south of the East European Plain). Doklady Akademii nauk. V. 475. № 4. P. 448–452. (in Russ.). https://doi.org/10.7868/S0869565217220194
  58. Yanina T. (2020). Environmental variability of the Ponto-Caspian and Mediterranean basins during the last climatic macrocycle. Geography, Environment, Sustainability. V. 13. № 4. P. 6–23. https://DOI-10.24057/2071-9388-2020-120
  59. Yanina T.A. (2012). Neopleistotsen Ponto-Kaspiya: biostratigrafiya, paleogeografiya, korrelyatsiya (Neopleistocene of the Ponto-Caspian: biostratigraphy, paleogeography, correlation). Moscow: MSU (Publ.). 264 p. (in Russ.)
  60. Yanina T.A., Svitoch A.A., Kurbanov R.N. et al. (2017). Experience in dating Pleistocene deposits of the Lower Volga region by optically stimulated. Vestnik Mosk. Un-ta. Seriya 5. Geografiya. № 1. P. 21–29. (in Russ.)
  61. Zaretskaya N., Panin A., Utkina A., Baranov D. (2024). Aeolian sedimentation in the Vychegda River valley, north-eastern Europe, during MIS 2–1. Quat. Int. V. 686–687. P. 83–98. https://doi.org/10.1016/j.quaint.2023.05.022

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Cryogenic structures of the Lower Volga region (according to literary sources): (a) – permafrost “pot” in the section near the Kopanovka (Vasiliev, 1961); (б) – pseudomorphs of ice wedges near Volzhsky city, filling with Akhtuba sands (Moskvitin, 1962); (в) – ice wedges transformed into “pots” at the contact of Akhtuba sands and Khazar silts, Nizhneye Zaymishche (Moskvitin, 1962); (г) – cracks in the section near Chernyy Yar (Shkatova, 1975)

下载 (326KB)
3. Fig. 2. Studied sections of the northern part of the Caspian Lowland: (a) – sections location; (б) – Chernyy Yar; (в) – Leninsk; (г) – outcrop of Kosika; (д) – lower part of the Srednyaya Akhtuba section; (е) – Raygorod section; (ж) – general view of the Bataevka section

下载 (889KB)
4. Fig. 3. Schemes of the studied sections of the Lower Volga region (the color of the deposits reflects the natural color of the sediment). 1 – clay; 2 – loam; 3 – sandy loam; 4 – sand; 5 – loess; 6 – paleosols; 7 – malacofauna; 8 – carbonates (concretions and admixtures); 9 – gypsum “roses”; 10 – krotovinas; 11 – erosion boundaries; 12 – cryogenic structures; 13 – cryogenic horizons; 14 – cryogenic stages and their age; 15 – OSL age, ka (Q); 16 – OSL age, ka (Fk). The numbers to the left of the columns indicate lithological layers

下载 (273KB)
5. Fig. 4. Structures in sections of the Lower Volga region: (a) – cryoturbations in alluvial deposits (SA-2); (б) – structure of SA-1 with horizontal lenses; (в) – wedge-shaped structure of KOS-1 horizon; (г) – bag-like structure of KOS-2; (д) – structure of KOS-3 with horizontal lenses; (е) – wedge-shaped structure of SA-4 horizon; (ж) – bag-like structure of RG-2 horizon

下载 (613KB)
6. Fig. 5. Microstructure and morphology of quartz grains in the deposits of the Lower Volga region: (a) – crescent-shaped grooves on the surface of quartz particles (SA-2); (б) – pores with dense walls (RG-2); (в) – calcite coat on the grain surface (RG-2); (г–з) – grain morphology of the Chernyy Yar section (CY-1): (г) – aggregate composed of calcite (inclosing sediments, layer 7); (д) – angular grain with conchoidal chips; (е) – angular grain with smoothed angles and parallel grooves (white arrows); (ж) – isometric grain with a surface covered with small pits; (з) – elongated grain with smoothed angles, pits on the surface; (и) – rounded grain from the material of pseudomorphosis (KOS-4); (к) – tubular pore in loess microstructure, Srednyaya Akhtuba section; (л) – calcite (CaCO3), Srednyaya Akhtuba section; (м) – isometric grain with unevenly distributed pits on the surface (white arrows) (filler of the tail part of ice wedge cast, LN-2); (н) – depressions and pits on the surface of the grain (horizon LN-2); (о) – angular grain with numerous chips on the surface (LN-2); (п) – grain with fresh conchoidal fractures (1) and a surface that has retained its original roundness (2) (LN-2)

下载 (445KB)
7. Fig. 6. Microstructure of deposits in thin sections: (a–б) – microstructure of surface horizons of MIS 5s paleosols formed on floodplain deposits: cracks filled with silty Atelian material among humus-clay material (SA-5, depth 15.57–15.62 m); (в) – ooid-rounded aggregate with an annular clay film on the surface, fractured quartz (SA-1, depth 6.20 m rel.); (г) – “onion-like” aggregates in the main pore, palaeosol MIS 5a (LN-2, depth 13.73–13.78 m rel.); (д) – filling the crack with material of different composition: in the lower part – layered clayey-silty (water genesis), on the top – fine sand filler (LN-1, depth 7.28–7.38 m rel.); (е) – a combination of different aggregates: angular with sharp noses, lumpy, ellipsoid-like with carbonate nodules (SA-5, depth 15.58–15.63 m rel.)

下载 (2MB)
8. Fig. 7. Correlation of cryogenic events in the East European Plain and the Lower Volga region with global and Caspian events

下载 (214KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».