Chronology and main stages of vegetation development in the central region of the East European Plain during the Mikulino interglacial

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The chronology of the Mikulino Interglacial and its individual phases have been the subject of discussion. The goal of this study was to evaluate the time limits of the main stages of the Mikulino Interglacial on the Russian Plain according to ²³⁰Th/U dating and paleobotanical studies of lake and peat sediments from the known sections located within the Tver region on the Bolshaya Dubenka River, Malaya Kosha River, Granichnaya River, and Sizhina River (“Kileshino-2” section). An improved geochronological approach has been applied to identify layers suitable for the ²³⁰Th/U isochronous approximation. In combination with pollen and carpological studies of the deposits, this made it possible to date units corresponding to relatively narrow time intervals in the development of plant formations at different stages of the Last Interglacial. New paleobotanical studies of buried lake and peat sediments from the sections located on the Bolshaya Dubenka River, Malaya Kosha River, and Granichnaya River allowed us to restore the vegetation development during the Mikulino Interglacial in the interval of pollen zones M1–M7, i.e., more pollen zones have been analyzed and in greater detail than in 1960–1970. A chronological scheme of the main stages of vegetation development in the Mikulino Interglacial is proposed based on the results of ²³⁰Th/U dating and paleobotanical studies of organic-rich deposits from the Tver region sections in combination with previously published data obtained for the “Nizhnyaya Boyarshchina” section from the Smolensk region. The Mikulino Interglacial had begun about 130–126 kyr ago. Its first phase, corresponding to the M2 zone, ended ca. 118 kyr ago. The pre-optimal stages of vegetation development (M3 and M4 zones) fit into the time range of ca. 118–112 kyr ago. The climatic optimum of the interglacial (M5 and M6 zones) began ca. 112 kyr ago and ended ca. 100 kyr ago. The duration of the Mikulino Interglacial was probably at least 25 thousand years.

Full Text

Restricted Access

About the authors

F. E. Maksimov

St. Petersburg State University

Author for correspondence.
Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg

L. A. Savelieva

St. Petersburg State University

Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg

A. P. Fomenko

St. Petersburg State University; Komarov Botanical Institute of the RAS

Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg

S. S. Popova

Komarov Botanical Institute of the RAS

Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg

I. S. Zyuganova

Institute of Geography RAS

Email: maksimov-fedor@yandex.ru
Russian Federation, Moscow

V. A. Grigoriev

St. Petersburg State University

Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg

A. Yu. Petrov

St. Petersburg State University

Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg

S. F. Boltramovich

St. Petersburg State University

Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg

V. Yu. Kuznetsov

St. Petersburg State University; Herzen State Pedagogical University of Russia

Email: maksimov-fedor@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg

References

  1. Ananova E.N., Zarrina E.P., Kazartseva T.I. et al. (1973). New data on stratigraphy of interglacial deposits on the Malaya Kosha and Bolshaya Dubenka rivers (Upper Volga). Byull. Komis. po izuch. chetvertich. perioda. № 40. P. 22–34. (in Russ.)
  2. Andreev A.A., Shumilovskikh L.S., Savelieva L.A. et al. (2019). Environmental conditions in northwestern Russia during MIS 5 inferred from the pollen stratigraphy in a sediment core from Lake Ladoga. Boreas. V. 48. P. 377–386. https://doi.org/10.1111/bor.12382
  3. Bobrov A.E., Kupriyanova L.A., Litvintseva M.V. et al. (1983). Spory paporotnikoobraznykh i pyl’tsa golosemennykh i odnodol’nykh rastenii flory evropeiskoi chasti SSSR (Spores of ferns and pollen of gymnosperms and monocotyledons of the flora of the European part of the USSR). Leningrad: Nauka (Publ.). 208 p. (in Russ.)
  4. Bolikhovskaya N.S., Molodkov A.N. (2020). The second half of MIS 5 (100-70 thousand years ago): glacial or interglacial? Aktual’nye problemy paleogeografii pleistotsena i golotsena: Mat-ly Vseros. konf. s mezhdunar. uchast. “Markovskiye chteniya — 2020”. Moscow: Geograficheskii fakul’tet MGU (Publ.). P. 63–70. (in Russ.)
  5. Börner A., Hrynowiecka A., Kuznetsov V. et al. (2015). Palaeoecological investigations and ²³⁰Th/U dating of Eemian interglacial peat sequence of Banzin (Mecklenburg-Western Pomerania, NE-Germany). Quat. Int. V. 386. P. 122–136. https://doi.org/10.1016/j.quaint.2014.10.022
  6. Börner A., Hrynowiecka A., Stachowicz-Rybka R. et al. (2018). Palaeoecological investigations and ²³⁰Th/U dating of the Eemian Interglacial peat sequence from Neubrandenburg-Hinterste Mühle (Mecklenburg-Western Pomerania, NE Germany). Quat. Int. V. 467. Part A. P. 62–78. https://doi.org/10.1016/j.quaint.2017.04.003
  7. Brauer A., Allen J.R.M., Mingram J. et al. (2007). Evidence for last interglacial chronology and environmental change from Southern Europe. Proc. of the Nat. Acad. of Sciences. V. 104 (2). P. 450–455. https://doi.org/10.1073/pnas.0603321104
  8. Chebotareva N.S., Nedoshivina M.A., Stolyarova T.I. (1961). Moscow-Valdai (Mikulin) interglacial deposits in the upper Volga basin and their significance for paleogeography. Byull. Komis. po izuch. chetvertich. perioda. № 26. P. 35–49. (in Russ.)
  9. Chebotareva N.S., Pisareva V.V., Malyasova E.S. (1979). Ancient lake basin in the valley of the river. Malaya Kosha. Izvestiya AN SSSR. Seriya geograficheskaya. № 3. P. 94–102. (in Russ.)
  10. Cherdyncev V.V., Chalov P.I. (1977). The phenomenon of natural separation of ²³⁴U and ²³⁸U. In: Otkrytie v SSSR № 163 s prioritetom ot 27 marta 1954 g. Moscow: CNIIPI (Publ.). P. 28. (in Russ.)
  11. Cwynar L.C., Burden E., McAndrews J.H. (1979). An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Canadian J. of Earth Sci. V. 16. № 5. P. 1115–1120.
  12. Dombrovskaya A.V., Koreneva M.M., Tyuremnov S.N. (1959). Atlas rastitel’nykh ostatkov, vstrechaemykh v torfe (Atlas of plant residues found in peat). Moscow: Gosenergoizdat (Publ.). 228 p. (in Russ.)
  13. Geyh M.A. (2001). Reflections on the ²³⁰Th/U dating of dirty material. Geochronometria. V. 20. P. 9–14.
  14. Geyh M.A. (2008). Selection of suitable data sets improves ²³⁰Th/U dates of dirty material. Geochronometria. V. 30. P. 69–77. https://doi.org/10.2478/v10003-008-0001-1
  15. Geyh M.A., Müller H. (2005). Numerical ²³⁰Th/U dating and palynological rewiew of the Holsteinian/Hoxnian Interglacial. Quat. Sci. Rev. V. 24. P. 1861–1872. https://doi.org/10.1016/j.quascirev.2005.01.007
  16. Giterman R.E., Kuprina N.P., Shancer E.V. (1975). On the Mikulino age of interglacial layers near the village of Kileshino (Upper Volga). Byull. Komis. po izuch. chetvertich. perioda. № 44. P. 84–88. (in Russ.)
  17. Grichuk V.P. (1961). Pleistocene floras of glacial regions of the East European Plain Fossil flora as a paleontological basis for the stratigraphy of Quaternary deposits. In: Rel’ef i stratigrafiya chetvertichnykh otlozhenii Severo-Zapada Russkoi ravniny. Moscow: Nauka (Publ.). P. 25–71. (in Russ.)
  18. Grichuk V.P. (1989). Istoriya flory i rastitel’nosti (The history of flora and vegetation). Moscow: Nauka (Publ.). 183 p. (in Russ.)
  19. Grichuk V.P., Zaklinskaja E.D. (1948). Analiz iskopaemykh pyl’tsy i spor i ego primenenie v paleogeografii (Analysis of fossil pollen and spores and its application in paleogeography). Moscow: Geografgiz (Publ.). 175 p. (in Russ.)
  20. Grimm E.C. (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences. V. 13. P. 13–35.
  21. Grimm E.C. (2004). TGView, Version 2.0.2. Springfield: Illinois State Museum, Research and Collections Center.
  22. Karevskaja I.A., Muhametshina E.O., Zjuganova I.S. (2017). New Paleobotanical Data on the Late Pleistocene of the Upper Volga Basin. In: Mat-ly 14 Vseros. palinologicheskoi konf. Moscow: MGU (Publ.). P. 115–118. (in Russ.)
  23. Karpukhina N.V., Pisareva V.V., Zyuganova I.S. et al. (2020). New Data about the Section Stratigraphy near Kileshino (Tver Oblast) — the Key for Understanding Boundaries of Glaciations on the Valdai Hills in the Upper Pleistocene. Izvestiya RAN. Ser. geograficheskaya. V. 84. № 6. P. 874–887. (in Russ.). https://DOI: 10.31857/S2587556620060060
  24. Katc N.Ja., Katc C.B., Kipiani M.G. (1965). Atlas i opredelitel’ plodov i semyan, vstrechayushchikhsya v chetvertichnykh otlozheniyakh SSSR (Atlas and Keys to Fruits and Seeds Occurring in the Quaternary Deposits of the USSR). Moscow: Nauka (Publ.), 365 p. (in Russ.)
  25. Kaufman A., Broecker W.S. (1965). Comparison of ²³⁰Th and 14C ages for carbonate materials from Lakes Lahontan and Bonneville. J. of Geoph. Res. V. 70 (16). P. 4039–4054.
  26. Kotlukova I.V. (1972). Marginal formations of the central part of the Valdai Upland and their periglacial framing. In: Kraevye obrazovaniya materikovykh oledenenii. Moscow: Nauka (Publ.). P. 225–232. (in Russ.)
  27. Krasnov I.I., Kolesnikova T.D. (1967). New data on interglacial deposits in the Upper Volga basin. Byull. Komis. po izuch. chetvertich. perioda. № 33. P. 140–146. (in Russ.)
  28. Kukla G.J., Bond G., Broecker W.S. et al. (2002). Last Interglacial Climates. Quat. Res. V. 58. № 1. P. 2–13. https://doi.org/10.1006/Qres.2002.2316
  29. Kupriyanova L.A., Aleshina L.A. (1978). Pyl’tsa dvudol’nykh rastenii flory evropeiskoi chasti SSSR (Pollen of dicotyledonous plants of the flora of the European part of the USSR). Leningrad: Nauka (Publ.). 184 p. (in Russ.)
  30. Kupriyanova L.A., Aleshina L.A. (1972) Pyl’tsa i spory rastenii flory evropeiskoi chasti SSSR. Tom 1 (Pollen and plant spores of the flora of the European part of the USSR. V. 1). Leningrad: Nauka (Publ.). 171 p. (in Russ.)
  31. Kuznetsov V.Yu., Maksimov F.E. (2012). Metody chetvertichnoi geokhronometrii v paleogeografii i morskoi geologii (Quaternary geochronometry methods in paleogeography and marine geology). Saint-Petersburg: Nauka (Publ.). 191 p. (in Russ.)
  32. Lasberg K., Kalm V., Kihno K. (2014). Ice-free interval corresponding to Marine Isotope Stages 4 and 3 at the Last Glacial Maximum position at Kileshino, Valdaj Upland. Estonian J. of Earth Sci. V. 63. № 2. P. 88–96. https://doi: 10.3176/earth.2014.08
  33. Lauterbach S., Brauer A., Litt T. et al. (2012). Re-evaluation of the Bispingen palaeolake record — a revised chronology for the Eemian in Northern Germany. Geophys. Res. Abstr. V. 14. P. 8613.
  34. Litt T., Gibbard P. (2008). Definition of a Global Stratotype Section and Point (GSSR) for the base of the Upper (Late) Pleistocene Subseries (Quaternary System/Period). Episodes. V. 31 (2). P. 260–263. https://doi.org/10.18814/epiiugs/2008/v31i2/015
  35. Ludikova A.V., Subetto D.A., Andreev A.A. et al. (2021). The first dated preglacial diatom record in Lake Ladoga: long-term marine influence or redeposition story? J. Paleolimnol. V. 65. P. 85–99. https://doi.org/10.1007/s10933-020-00150-0
  36. Maksimov F.E., Andreicheva L.N., Kuznetsov V.Y. et al. (2021). Age and chronostratigraphic position of lacustrine-bog deposits in the Chernaya River basin in the north of the Bolshezemelskaya tundra according to the results of their ²³⁰Th/U- and 14C-dating. Vestn. SPbGU. Earth Sci. V. 66. № 2. P. 289–309. (in Russ.). https://doi: 10.21638/spbu07.2021.206
  37. Maksimov F.E., Kuznetsov V.Yu. (2010). New version of the ²³⁰Th/U dating method of the Upper and Middle Neopleistocene deposits. Vestn. SPbGU. Seriya 7. Geologiya. Geografiya. V. 4. P. 94–107. (in Russ.)
  38. Maksimov F.E., Kuznetsov V.Ju., Savel’eva L.A. et al. (2021). On the question of the time limits of the Mikulin interglacial and its individual phases. In: Puti evolyutsionnoi geografii. Vyp. 2: Mat-ly II Vseros. nauch. konf. Moscow: IG RAN (Publ.). P. 812–816. (in Russ.)
  39. Maksimov F.E., Savelieva L.A., Popova S.S. et al. (2022). Chronostratigraphic Position of the Mikulinian Deposits (Case of the Reference Section Near Nizhnyaya Boyarshchina Village, Smolensk Oblast). Izvestiya RAN. Seriya geograficheskaya. V. 86. № 3. P. 447–469. (in Russ.) https://doi.org/10.31857/S2587556622030116
  40. Molodkov A., Bolikhovskaya N. (2009). Climate change dynamics in Northern Eurasia over the last 200 ka: Evidence from mollusc-based ESR-chronostratigraphy and vegetation successions of the loess–palaeosol records. Quat. Int. V. 201. P. 67–76. https://doi.org/10.1016/j.quaint.2008.05.028
  41. Molodkov A.N., Bolihovskaya N.S. (2011). Climatic-chronostratigraphic scheme of the Neopleistocene of Northern Eurasia. In: Problemy paleogeografii i stratigrafii pleistotsena. Vyp. 3. Moscow: Geograficheskii fakul’tet MGU (Publ.). P. 44–77. (in Russ.)
  42. Moore P.D., Webb J.A., Collinson M.E. (1991). Pollen analysis. Oxford. 216 p.
  43. Nikitin V. P. (1969). Paleokarpologicheskii metod (Paleocarpological method). Tomsk: TGU (Publ.). 82 p. (in Russ.)
  44. Novenko E.Ju. (2016). Izmeneniya rastitel’nosti i klimata Central’noi i Vostochnoi Evropy v pozdnem pleistotsene i golotsene v mezhlednikov’e i perekhodnye etapy klimaticheskikh makrotsiklov (Changes in vegetation and climate of Central and Eastern Europe in the Late Pleistocene and Holocene in the interglacial and transitional stages of climatic macrocycles). Moscow: GEOS (Publ.). 228 p. (in Russ.)
  45. Rother H., Lorenz S., Börner A. et al. (2019). The terrestrial Eemian to late Weichselian sediment record at Beckentin (NE-Germany): First results from lithostratigraphic, palynological and geochronological analyses. Quat. Int. V. 501. Part A. P. 90–108. https://doi.org/10.1016/j.quaint.2017.08.009
  46. Rusakov A., Nikonov A., Savelieva L. et al. (2015). Landscape evolution in the periglacial zone of Eastern Europe since MIS 5: Proxies from paleosols and sediments of the Cheremoshnik key site (Upper Volga). Quat. Int. V. 365. P. 26–41. https://doi.org/10.1016/j.quaint.2014.09.029
  47. Rusakov A., Sedov S., Sheinkman V. et al. (2019). Late Pleistocene paleosols in the extra-glacial regions of Northwestern Eurasia: Pedogenesis, post-pedogenic transformation, paleoenvironmental inferences. Quat. Int. V. 501. P. 174–192. https://doi.org/10.1016/j.quaint.2018.03.020
  48. Savel’eva L.A., Rashke E.A., Titova D.V. (2013). Atlas fotografii rastenii i pyl’tsy del’ty reki Leny (Atlas of photographs of plants and pollen in the delta of the Lena River). St. Peterburg: SPbGU (Publ.). 114 p. (in Russ.)
  49. Semenenko L.T., Kozlov V.B. (1974). On the conditions of occurrence of the Mikulinsky deposits near the village of Loshakovo on the river. M. Kosha. Byull. Komis. po izuch. chetvertich. perioda. № 42. P. 154–158. (in Russ.)
  50. Shackleton N.J., Sanchez-Goni M.F., Pailler D. et al. (2003). Marine Isotope Substage 5e and the Eemian Interglacial. Global and Planetary Change. V. 36. P. 151–155. https://doi.org/10.1016/S0921-8181(02)00181-9
  51. Stirling C.H., Esat T.M., Lambeck K. et al. (1998). Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. V. 160. P. 745–762.
  52. Velichkevich F.Yu. (1985). New data on the Mikulino seed floras of the Kalinin region. In: Problemy pleistotsena. Minsk: Nauka i Tekhnika (Publ.). P. 159–173. (in Russ.)
  53. Velichkevich F.Yu., Zastawniak E. (2006). Atlas of the vascular plant macrofossils of Central and Eastern Europe. Part 1. Pteridophytes and monocotyledons. Kraków: W. Szafer Inst. of Bot. 224 p.
  54. Velichkevich F.Yu., Zastawniak E. (2008). Atlas of the vascular plant macrofossils of Central and Eastern Europe. Part 2. Herbaceous dicotyledons. Kraków: W. Szafer Inst. of Bot. 380 p.
  55. Zyuganova I.S. (2009). Upper Pleistocene carpological assemblages from the South of the Valdai Upland. Paleontol. J. № 43. P. 1351–1362. https://doi.org/10.1134/S0031030109100165

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the studied sections. 1 — section (1 — “Bolshaya Dubenka”, 2 — “Malaya Kosha”, 3 — “Granichnaya”, 4 — “Kileshino-2”, 5 — “Nizhnyaya Boyarshchina”); 2 — hydrological network; 3 — direction of the river flow; 4 — administrative center; 5 — settlement.

Download (567KB)
3. Fig. 2. Lithological cores of the “Bolshaya Dubenka”, “Malaya Kosha”, “Granichnaya”, “Kileshino-2” (Karpukhina et al., 2020) and “Nizhnyaya Boyarshchina” (Maksimov et al., 2022) sections. 1 — fine-grained sand; 2 — coarse sand; 3 — silts; 4 — loam; 5 — clay; 6 — rhythmically layered heavy loam; 7 — peat; 8 — gyttia; 9 — silty gyttia; 10 — sandy gyttia; 11 — dense gyttia; 12 — dense sandy gyttia; 13 — gravel; 14 — boulder; 15 — boundaries between layers; 16 — stratigraphic unconformity; 17 — ²³⁰Th/U age.

Download (509KB)
4. Fig. 3. Spore-pollen diagram of the “Bolshaya Dubenka” section.

Download (167KB)
5. Fig. 4. Distribution of organic matter (LOI, loss on ignition), U, and ratios of ²³⁰Th/²³⁴U, ²³⁴U/²³⁸U, and ²³⁰Th/²³²Th activities along the vertical profile of the lacustrine-bog sequence of the “Bolshaya Dubenka” section. The curly brackets show the sites selected for ²³⁰Th/U isochron dating. 1 — closed radiometric system; 2 — geochemical barrier (open radiometric system).

Download (750KB)
6. Fig. 5. Graphical representation of isochron age determination according to two calculation methods for organic-rich deposits from the “Bolshaya Dubenka” section. (а, б, в, г) — linear dependences plotted for 6 peat samples from a depth of 90–102 cm; f, g — values of correction indexes, which are used to calculate the isochron age of 6 samples from a depth of 90–102 cm using a linear method. Samples: 1 — samples on which linear dependencies are built, 2 — sample from a depth of 92–94 cm deviating from linearity, 3 — sample from a depth of 96–98 cm assigned to an open radiometric system. (д) — finding the f value required to calculate the isochron age of 6 samples from a depth of 90–102 cm using a non-linear approach.

Download (367KB)
7. Fig. 6. Spore-pollen diagram of the “Malaya Kosha” section.

Download (533KB)
8. Fig. 7. Carpological diagram of deposits from the “Malaya Kosha” section. The horizontal axes show the number of residues in a sample. 1 — single carpological remains (less than 5). See designations on the lithological column in fig. 2.

Download (621KB)
9. Fig. 8. Spore-pollen diagram of the sediments from the “Granichnaya” section.

Download (525KB)
10. Fig. 9. Linear dependences according to the analytical data of the studied sections in the coordinates ²³⁰Th/²³²Th — ²³⁴U/²³²Th.

Download (330KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies