Morphodynamics and morpotectonics of the varzuga river mouth area (terskiy coast of the white sea) in the late glacial and holocene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Late- and post-glacial history of the development of the White Sea coastal zone in the area of the Varzuga River mouth is considered as a result of the interaction of endogenous and exogenous factors of coastal morpholithogenesis. Based on geomorphological investigations, study of Holocene deposits by lithostratigraphic, diatom and radiocarbon analyses, as well as collection and analysis of published data, new results on the area’s relief development for ~13 cal ka BP have been obtained. The features of the regional hierarchical morphostructure and local post-glacial tectonics of the territory — the spatial relationships of blocks and the speed of vertical movements – were determined. The superimposed linear Nizhnevarzugskaya depression, which determined the configuration of the Varzuga River estuary in the late and postglacial time, was identified for the first time. The influence of the spatial ratio of blocks and differentiated postglacial uplift on the coastal morpholithogenesis was established. The course of changes in the relative sea level (RSL), development conditions and morphodynamics of the open coast and the estuary of the Varzuga River were reconstructed and new data on the rhythms of coastal morpholithogenesis processes (coastal, estuarine, and aeolian) obtained. Three stages of the coastal zone development were identified, corresponding to regional rhythms of changes in the relative sea level and climate: (I) Late Glacial transgression and Early Holocene regression (~12–9.8 cal ka BP), (II) Middle Holocene Tapes transgression (7.8–4.9 cal ka BP), (III) Late Holocene regression (after 4.9 cal ka BP). The upper marine boundary of the Late Glacial transgression is traced at the elevation of ~54–55 m a. s. l. to the west of the Nizhnevaruzgskaya depression, — ~39–40 m a. s. l. to the east of it, and — 22–25 m a. s. l. in the depression. The shores of lower morphostructural blocks were probably blocked by dead ice up until ~10.2–9.8 cal ka BP. During the Tapes transgression, the RSL reached a maximum (~7.8–7.6 cal ka BP; ~20 m a. s. l.), and by 4.9 cal ka BP fall to ~15 m a. s. l. The prevailing directions of sediment fluxes, winds and wave approach became similar to those of today. However, the main source of the coastal zone sedimentary supply was the erosion of glaciofluvial sediments and the input of sands from the seabed. In the interval of ~4.9–1.7 cal ka BP, the RSL decreased to ~5 m a. s. l. The sediment runoff of the Varzuga River became the main source of feeding the coastal zone.

Full Text

Restricted Access

About the authors

T. Yu. Repkina

Institute of Geography RAS; FSBI VNIIOkeanologya

Author for correspondence.
Email: t-repkina@yandex.ru
Russian Federation, Moscow; St. Petersburg

N. E. Zaretskaya

Institute of Geography RAS; Geological Institute RAS; FSBI VNIIOkeanologya

Email: n_zaretskaya@inbox.ru
Russian Federation, Moscow; Moscow; St. Petersburg

S. V. Shvarev

Institute of Geography RAS; Schmidt Institute of Physics of the Earth RAS

Email: shvarev@ifz.ru
Russian Federation, Moscow; Moscow

N. N. Lugovoy

Lomonosov Moscow State University; Institute of Geography RAS

Email: lugovoy-n@yandex.ru

Faculty of Geography

Russian Federation, Moscow; Moscow

A. R. Alyautdinov

Lomonosov Moscow State University

Email: ali_alia@mail.ru

Faculty of Geography

Russian Federation, Moscow

O. S. Shilova

Lomonosov Moscow State University

Email: o.olyunina@mail.ru

Faculty of Geography

Russian Federation, Moscow

References

  1. Agafonova E.A., Polyakova E.I., Romanenko F.A. (2020). Diatoms in the Holocene deposits of the Tersky coast of the White Sea in connection with the history of its development in the post-glacial period. Arktika i Antarktika. № 2. P. 1–16. (in Russ.) https://doi.org/10.7256/2453–8922.2020.2.32632
  2. Astafiev B.Yu., Bogdanov Yu.B., Vinskunova K.G. et al. (2007). Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1:1 000 000 (tret’e pokolenie). Seriya Severo-Karsko-Barentsevomorskaya. List Q–(35), 36 (Murmansk). Ob”yasnitel’naya zapiska (State geological map of the Russian Federation. Scale 1:1,000,000 (third generation). Series North Kara-Barents Sea. Sheet Q–(35), 36 (Murmansk). Explanatory note). St. Petersburg: Kartograficheskaya fabrika VSEGEI (Publ.). 281 p. (in Russ.)
  3. Astakhov V., Shkatova V., Zastrozhnov A. et al. (2016). Glaciomorphological Map of the Russian Federation. Quat. Int. V. 420. P. 4–14. https://doi.org/10.1016/j.quaint.2015.09.024
  4. Atlas “Klimat morei Rossii i klyuchevykh raionov Mirovogo okeana”. Beloe more. YESIMO. (Atlas “Climate of the seas of Russia and key regions of the World Ocean”. White Sea. ESIMO.) [Electronic data]. Access way: // http://www.esimo.ru/atlas/index_atlas.html (access date: 04.12.2022). (in Russ.)
  5. Avenarius I.G. (2004). Morphostructure of the White Sea region. Geomorfologiya. № 3. P. 48–56. (in Russ.) https://doi.org/10.15356/0435–4281–2004–3–48–56
  6. Baluev A.S., Zhuravlev V.A., Kolodyazhny S.Yu. et al. (Eds.). (2012). Tektonicheskaya karta Belogo morya m-ba 1:1 500 000. Ob”yasnitel’naya zapiska (Tectonic map of the White Sea scale 1 : 1 500 000. Explanatory note). Moscow: GIN RAN (Publ.). 58 p. (in Russ.)
  7. Baranskaya A.V., Khan N., Romanenko F.A. et al. (2018). A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. V. 199. P. 188–205. https://doi.org/10.1016/j.quascirev.2018.07.033
  8. Barinova S.S., Medvedeva L.A., Anissimova O.V. (2006). Bioraznoobrazie vodoroslei-indikatorov okruzhayushchei sredy (Diversity of algal indicators in environmental assessment). Tel Aviv: Pilies Studio (Publ.). 498 p. (in Russ.)
  9. Bogdanov Yu.B., Yakobson K.E., Amantov A.V. (Eds.). (2001). Karta dochetvertichnykh obrazovanii. Masshtab 1 : 1 000 000. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii (novaya seriya). List Q–(35)–37 (Kirovsk) (Map of pre-Quaternary formations. Scale 1 : 1,000,000. State Geological Map of the Russian Federation (new series). Sheet Q–(35)–37 (Kirovsk)). St. Petersburg: VSEGEI (Publ.). (in Russ.)
  10. Boyes B.M., Pearce D.M., Linch L.D. (2021). Glacial geomorphology of the Kola Peninsula and Russian Lapland. Journal of Maps. V. 17:2. P. 497–515. https://doi.org/10.1080/17445647.2021.1970036
  11. Creel R.C., Austermann J., Khan N.S. et al. (2022). Postglacial relative sea level change in Norway. Quat. Sci. Rev. V. 282. https://doi.org/10.1016/j.quascirev.2022.107422
  12. Denys L. (1985). Diatom analysis of an Atlantic_Subboreal core from Slijpe (western Belgian coast plain). Rewiew of Paleobotany and Palynology. V. 46. № 1–2. P. 33–53. https://doi.org/10.1016/0034–6667(85)90037–5
  13. Doornkamp J.C. (1986). Geomorphological approaches to the study of neotectonics. J. Geol. Soc. V. 143. № 2. P. 335–342. https://doi.org/10.1144/gsjgs.143.2.0335
  14. Dowdeswell J.A., Solheim A., Ottesen D. (2016). Rhombohedral crevasse-fill ridges at the marine margin of a surging Svalbard ice cap. Geological Society, London, Memoirs. V. 46. P. 73–74. https://doi.org/10.1144/M46.62
  15. Dunaev N.N., Leont’ev I.O., Repkina T.Yu. et al. (2011). The role of neotectonics in the present day dynamics of the sea coastal zone in the Western Arctic continental platform areas. Doklady Earth Sci. V. 437. № 1. P. 416–418. https://doi.org/10.1134/S1028334X11030123
  16. Dusterhus A., Rovere A., Carlson A. et al. (2016). Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives. Climate of the Past. V. 12. № 4. P. 911–921. https://doi.org/10.5194/cp-12–911–2016
  17. Eikhgorn G.L., Rybalko A.E., Spiridonov M.A. (1976). Opytno-proizvodstvennye morskie geologos”emochnye raboty v srednem i krupnom masshtabakh s tsel’yu razrabotki kriteriev otsenki perspektiv dna pribrezhnykh akvatorii na podvodnye rossypi (Pribrezhnyi shel’f Kol’skogo poluostrova) (Experience-production offshore geological surveys on a medium and large scale in order to develop criteria for assessing the prospects of the bottom of coastal waters for underwater placers (Coastal shelf of the Kola Peninsula)). Leningrad: VSEGEI (Publ.), 464 p. (in Russ.)
  18. Ekman I., Iljin V. (1995). Deglaciation, the Young Dryas end moraines and their correlation in Russian Karelia and adjacent areas. In: Glacial deposits in North-east Europe. Rotterdam: Balkama. P. 195–209.
  19. Elina G.A., Filimonova L.V., Grabovik S.I. et al. (2005). Swamps of the Kola Peninsula. Trudy Karel’skogo NTs RAN. V. 8. P. 94–111. (in Russ.)
  20. Elina G.A., Lukashov A.D., Yurkovskaya T.K. (2000). Pozdnelednikov’e i golotsen Vostochnoi Fennoskandii (paleorastitel’nost’ i paleogeografiya) (Late Glacial and Holocene of Eastern Fennoscandia (paleovegetation and paleogeography)). Petrozavodsk: Karel’skii NTs RAN (Publ.). 242 p. (in Russ.)
  21. Eronen M. (1974). The history of the Littorina Sea and associated Holocene events. Commentat. Phys. Math. V. 44. № 4. P. 79–195.
  22. EtoMesto — old maps of Russia and the world online. [Electronic resource]. URL: http://www.etomesto.ru/ (access date: 01.01.2022).
  23. Florensov N. A. (1978). Ocherki strukturnoi geomorfologii (Essays on structural geomorphology). Moscow: Nauka (Publ.). 238 p. (in Russ.)
  24. Germain H. (1981). Flore des Diatomées. Diatomophycées. Eaux douces et saumätres du Massif armoricain et des contrées voisines d’ Europe occidentale. Paris: Bou bée (Publ.). 444 p.
  25. Gleser S.I., Jousé A.P., Makarova I.V. et al. (Eds.). (1974). Diatomovye vodorosli SSSR (iskopaemye i sovremennye). T. 1. (The diatoms of the USSR (fossil and recent). V. 1). Leningrad: Nauka (Publ.). 403 p. (in Russ.)
  26. Glukhovskiy B.Kh., Terziyev F.S. (Eds.). (1991). Gidrometeorologiya i gidrokhimiya morei SSSR. T. II. Beloe more (Hydrometeorology and hydrochemistry of the seas of the USSR. T. II. White Sea). Leningrad: Gidrometeoizdat (Publ.) 240 p. (in Russ.)
  27. Harff J., Furmańczyk K., von Storch H. (Eds.). (2017). Coastline Changes of the Baltic Sea from South to East. Coastal Research Library. V. 19. Cham: Springer. https://doi.org/10.1007/978–3–319–49894–2
  28. Hättestrand C., Kolka V.V., Stroeven A.P. (2007). The Keiva ice marginal zone on the Kola Peninsula, northwest Russia: A key component for reconstructing the palaeoglaciology of the northeastern Fennoscandian Ice Sheet. Boreas. V. 36. № 4. P. 352–370. https://doi.org/10.1080/03009480701317488
  29. Hijma M.P., Engelhart S.E., Tornqvist T.E. et al. (2015). A protocol for a geological sea-level database. In: I. Shennan, A.J. Long, B.P. Horton (Eds.). Handbook of Sea-level Research. John Wiley & Sons, Ltd, New York. P. 536–553.
  30. Hyvärinen H. (1984). The Mastogloia stage in the Baltic Sea history: diatom evidence from Southen Finland. Bull. Geol. Soc. Finl. V. 56. № 1–2. P. 99–115.
  31. Ilyashuk B.P., Ilyashuk E.A., Hammarlund D. (2007). Climate change in the foothills of the Khibiny, Kola Peninsula, during the Holocene. Byull. Komis. po izuch. сhetvertich. perioda. V. 67. P. 85–96. (in Russ.)
  32. Ilyashuk E.A., Ilyashuk B.P., Hammarlund D. et al. (2005). Holocene climatic and environmental changes inferred from midge records (Diptera: Chironomidae, Chaoboridae, Ceratopogonidae) at Lake Berkut, southern Kola Peninsula. The Holocene. V. 15. P. 897–914. https://doi.org/10.1191/0959683605hl865ra
  33. Kaplin P.A., Selivanov A.O. (1999). Izmenenie urovnei morei Rossii i razvitie beregov (Changing the levels of the Russian seas and the development of the coast). Moscow: GEOS (Publ.). 299 p. (in Russ.)
  34. Kazakov L.A., Veshnyakov G.V. (2014). Kuzomenskie peski v nachale XXI veka (Kuzomensky sands at the beginning of the 21st century). Moscow: Pi-Kvadrat (Publ.). 128 p. (in Russ.)
  35. Kolka V.V., Korsakova O.P., Tolstobrov D.S. et al. (2019). The coast of the Kandalaksha Bay of the White Sea: complex lithological, micropaleontological, neotectonic, geochronological studies of the Laboratory of Geology and Minerageny of the latest deposits of the Geological Institute of the KSC RAS in 2017–2019. In: Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. V. 6. P. 53–60. (in Russ.) https://doi.org/10.24411/2687–1092–2019–10609
  36. Kolodyazhny S.Y., Baluev A.S., Zykov D.S. (2019). Structure and evolution of Belomorian-Severodvinsk shear zone in the Late Proterozoic and Phanerozoic, East-European Platform. Geotektonika. № 1. P. 62–86. (in Russ.) https://doi.org/10.31857/S0016–853X2019162–86
  37. Korsakova O.P. (2019). Formal stratigraphy of the neopleistocene (middle and upper/late Pleistocene) in the Kola region, NW Russia. Quat. Int. V. 534. P. 42–49. https://doi.org/ 10.1016/j.quaint.2019.03.007
  38. Korsakova O.P. (2022). White Sea coasts within Fennoscandian crystal Shield in the Neopleistocene and Holocene. Izvestiya RAN. Ser. geograficheskaya. V. 86. № 6. P. 883–897. (in Russ.) https://doi.org/10.31857/S258755662206005X
  39. Korsakova O., Molodkov A., Yelovicheva Ya. et al. (2019). Middle Pleistocene marine deposits on the Kola Peninsula (NW Russia). Quat. Int. V. 509. P. 3–16. https://doi.org/10.1016/j.quaint.2018.09.019
  40. Koshechkin B.I. (1979). Golotsenovaya tektonika vostochnoi chasti Baltiiskogo shchita (Holocene tectonics of the eastern part of the Baltic Shield). Leningrad: Nauka (Publ.) 157 p. (in Russ.)
  41. Koshechkin B.I., Kagan L.Ya., Kudlaeva A.L. et al. (1973). Coastal formations of late- and post-glacial marine basins in the south of the Kola Peninsula. In: Paleogeografiya i morfostruktury Kol’skogo p-ova. Leningrad: Nauka (Publ.). P. 87–133. (in Russ.)
  42. Krammer K., Lange-Bertalot H. (1988). Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (Eds.). Süsswasserflora von Mitteleuropa. Stuttgart: Gustav Fisher Verlag (Publ.). 596 p.
  43. Krasnyi L.I. (1984) Global divisibility of the lithosphere in the light of the geoblock concept. Sovetskaya geologiya. № 7. С.17–32. (in Russ.)
  44. Kremenetski C.V., Patyk-Kara N.G. (1997). Holocene vegetation dynamics of the southeast Kola Peninsula. The Holocene. V. 7. № 4. P. 473–479. https://doi.org/10.1177/095968369700700409
  45. Kremenetski C.V., Vaschalova T., Goryachkin S. et al. (1997). Holocene pollen stratigraphy and bog development in the west of the Kola Peninsula. Boreas. V. 26. P. 91–102. https://doi.org/10.1111/j.1502–3885.1997.tb00656.x
  46. Krikunova A.I., Kostromina N.A., Savelieva L.A. et al. (2022). Late- and postglacial vegetation and climate history of the central Kola Peninsula derived from a radiocarbon-dated pollen record of Lake Kamenistoe. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 603. https://doi.org/ 10.1016/j.palaeo.2022.111191
  47. Krylenko I.V., Lipka O.N., Sutkaitis O.K. (2018). Prichiny i posledstviya izmeneniya rusla v nizhnem techenii reki Varzugi (Causes and consequences of channel changes in the lower reaches of the Varzuga River). Moscow: WWF (Publ.). 200 p. (in Russ.)
  48. Kublitskiy Yu., Repkina T., Leontiev P. et al. (2023). Reconstruction of relative sea-level changes based on a multiproxy study of isolated basins on the Onega Peninsula (White Sea, northwestern Russia). Quat. Int. V. 644–645. P. 79–95. https://doi.org/10.1016/j.quaint.2022.04.016
  49. Lamb H.H. (1979). Climatic variation and changes in the wind and ocean circulation: The Little Ice Age in the northeast Atlantic. Quat. Res. V. 11. № 1. P. 1–20.
  50. Lavrova M.A. (1960). Chetvertichnaya geologiya Kol’skogo poluostrova (Quaternary Geology of the Kola Peninsula). Moscow-Leningrad: AN SSSR (Publ.). 233 p. (in Russ.)
  51. Lunkka J.P., Kaparulina E., Putkinen N. et al. (2018). Late Pleistocene palaeoenvironments and the last deglaciation on the Kola Peninsula. Arktos. V. 4. P. 2–18. https://doi.org/10.1007/s41063–018–0053–z
  52. Mitrofanov F.P. (Ed.) (2001). Geologicheskaya karta Kol’skogo regiona masshtaba 1: 500 000 (Geological map of the Kola region, scale 1: 500 000). Apatity. (in Russ.)
  53. Nevessky E.N., Medvedev V.S., Kalinenko V.V. (1977). Beloe more. Sedimentogenez i istoriya razvitiya v golotsene (White Sea. Sedimentogenesis and history of development in the Holocene). Moscow: Nauka (Publ.). 236 p. (in Russ.)
  54. Nikonov A.A., Subetto D.A. (2007). Historical tsunami on the Solovetsky Islands. Izvestiya RGO. V. 139. № 6. P. 24–31. (in Russ.)
  55. Nosova O.Yu., Vashkov A.A. (2021). Lithologic composition of coarse clastic fraction of the tillite from the west part of the Terskie Keivy glacial accumulative complex, southern Kola Peninsula. Regional’naya geologiya i metallogeniya. № 86. P. 11–22. (in Russ.) https://doi.org/10.52349/0869–7892_2021_86_11–22
  56. Novichkova Ye. A. (2008). Postlednikovaya istoriya razvitiya Belogo morya po materialam izucheniya vodnykh i nazemnykh palinomorf (Postglacial history of the development of the White Sea based on the study of aquatic and terrestrial palynomorphs). PhD thesis. Moscow: IO RAS. 26 p. (in Russ.)
  57. Novichkova E.A., Polyakova E.I. (2008). Hydrological changes in the White Sea during the historical period inferred from analysis of dinocysts. Doklady Earth Sci. V. 423 № 1. P. 1290–1293. https://doi.org/10.1134/S1028334X08080242
  58. Polyakova Y.I., Novichkova,Y.A., Lisitzin A.P. et al. (2014). Modern data on the biostratigraphy and geochronology of White Sea sediments. Dokady Earth Sci. V. 454. P. 169–174. https://doi.org/10.1134/S1028334X14020032
  59. Proshkina-Lavrenko A.I. (Ed.). (1951). Opredelitel’ presnovodnykh vodoroslei SSSR. Vypusk 4: Diatomovye vodorosli (Key to freshwater algae of the USSR. Issue. 4: Diatoms). Moscow: Sovetskaya nauka (Publ.). 620 p. (in Russ.)
  60. Ramsay W. (1898). Über die geologische Entwicklung der Halbinsel Kola in der Quartärzeit. Fennia, Bd. XVI. № 1. P. 1–151.
  61. Reimer P.J., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon. V. 62. P. 725–757. http://dx.doi.org/10.1017/RDC.2020.41
  62. Repkina T.Yu., Zaretskaya N.E., Subetto D.A. et al. (2017). Morphodynamics of the shores of the northwestern Onega Peninsula of the White Sea in the Holocene. Guba Konyukhova. Trudy Karel’skogo NTs RAN. № 8. P. 1–19. (in Russ.)
  63. Repkina T.Yu., Zaretskaya N.E., Shilova O.S. et al. (2019). Southeastern coast of the Gorlo Strait of the White Sea in the Holocene: relief, sediments, dynamics. In: Rel’yef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. V. 6. St. Petersburg: AANII (Publ.). P. 146–153. (in Russ.) https://doi.org/10.24411/2687–1092–2019–10621
  64. Repkina T.Yu., Romanenko F.A., Ludikova A.V. et al. (2020). The Northwestern shores of the Onega Peninsula of the White Sea in the Holocene: development conditions, dynamics, chronology. Izvestiya RAN. Seriya. geograficheskaya. V. 84. № 6. P. 888–904. (in Russ.) https://doi.org/10.31857/S2587556620060096
  65. Repkina T.Yu., Lugovoi N.N., Gurinov A.L. et al. (2022). Anthropogenic changes in eolian processes on the coast of the White Sea. Izvestiya RAN. Seriya geograficheskaya. V. 86. № 6. P. 1046–1062. (in Russ.) https://doi.org/10.31857/S2587556622060140
  66. Romanenko F.A., Shilova O.S. (2012). The postglacial uplift of the Karelian Coast of the White Sea according to radiocarbon and diatom analyses of lacustrine-boggy deposits of Kindo Peninsula. Doklady Earth Sci. V. 442. P. 242–246. https://doi.org/10.1134/S1028334X12020079
  67. Romanenko F.A., Garankina E.V., Dzhevakhashvili P.S. et al. (2021). The structure and dynamics of the relief of the western part of the Tersky coast of the White Sea. In: Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. V. 8. P. 199–204. (in Russ.). https://doi.org/10.24412/2687-1092-2021-8-199-204
  68. Rybalko A.E., Zhuravlev V.A., Semenova L.R. et al. (2017). Quaternary sediments of the White Sea and the history of the development of the modern White Sea basin in the late Pleistocene — Holocene. The White Sea system. V. IV. Moscow: Scientific World (Publ.). P. 84–127.
  69. Sadovskii M.A., Bolhovitinov L.G., Pisarenko V.F. (1987). Deformirovanie geofizicheskoi sredy i seismicheskii protsess (Deformation of the geophysical environment and the seismic process). Moscow: Nauka (Publ.). 100 p. (in Russ.)
  70. Safyanov G.A., Solov’eva G.D. (2005). Geomorphology of the bottom and coasts of the White Sea. Vestn. Mosk. Un-ta. Ser. 5. Geografiya. № 3. P. 54–62. (in Russ.)
  71. Safyanov G.A., Shevchenko N.V. (2007а). Peculiarities of granulometric differentiation of sediments of the microtidal coast. In: Problemy upravleniya i ustoichivogo razvitiya pribrezhnoi zony morya. Gelendzhik: YuO IO RAN (Publ.). P. 172–175. (in Russ.)
  72. Safyanov G.A., Shevchenko N.V. (2007б). Eolian processes on the shores of the White Sea. In: Problemy upravleniya i ustoichivogo razvitiya pribrezhnoi zony morya. Gelendzhik: YuO IO RAN. P. 175–178. (in Russ.)
  73. Safyanov G.A., Repkina T.Yu. (2017). Morpho- and lithodynamics of the shores of the Onega Peninsula. In: The White Sea system. V. IV. Moscow: Scientific World (Publ.). P. 185–200. (in Russ.)
  74. Sapelko T. (2017). Northern Scandinavia: paleogeography of the Kola Peninsula. In: Human Colonization of the Arctic: The Interaction Between Early Migration and the Paleoenvironment. Elsevier. P. 23–33.
  75. https://doi.org/10.1016/C2015–0–04747–5
  76. Scheidegger A.E. (2004). Morphotectonics. Berlin, Germany: Springer-Verlag Berlin Heidelberg. 197 p. https://doi.org/10.1007/978–3–642–18745–2
  77. Selivanov A.O. (1996). Morphological changes on Russian coasts under rapid sea-level changes: Examples from the Holocene history and implications for ther future. J. Coastal Res. V. 12. № 4. P. 823–830.
  78. Selivanovskaya E.E., Vrachinskaya M.M. (1976). Geologicheskaya karta SSSR masshtaba 1: 200 000. Seriya Kol’skaya. Listy Q–37–XIII, XIV. Ob”yasnitel’naya zapiska (Geological map of the USSR, scale 1: 200 000. Kola series. Sheets Q–37–XIII, XIV. Explanatory note). Moscow: MingeoSSSR (Publ.). 88 p. (in Russ.)
  79. Shenkman E.Ya. (Ed.). (1991). Geodinamicheskaya karta Kol’skogo poluostrova. Masshtab 1: 500 000 (Geodynamic map of the Kola Peninsula. Scale 1: 500 000). Moscow: Mingeo SSSR, PGO “Aerogeologiya”, MOMKAGE (funds). (in Russ.)
  80. Shubina N.G., Aristarkhova L.B. (1965). Methods of restoring the “primary” tectonic relief on a topographic map. Vestn. Mosk. Un-ta. Ser. 5. Geografiya. № 2. P. 34–41. (in Russ.)
  81. Shvarev S.V. (2022). Morphotectonics, seismicity and exogenous processes of the Kola Peninsula. Geologiya i geofizika. V. 63. № 8. P. 1135–1152. (in Russ.) https://doi.org/10.15372/GiG2021126
  82. Simonov Yu.G., Lukashov A.A. (1963). Some methods and results of the analysis of neotectonic structures of the South-Eastern Transbaikalia. Zapiski Zabaikal’skogo otdeleniya GO SSSR. V. 21 (2). P. 170–178. (in Russ.)
  83. Sobolev V.M. (2008). Composition, stratigraphy of the Late Quaternary deposits of the Gorlo Strait of the White Sea and the main features of its paleogeography. Problemy paleogeografii i stratigrafii pleystotsena. V. 2. Moscow: MGU (Publ.). P. 144–156. (in Russ.)
  84. Solovieva N., Tarasov P.E., MacDonald G. (2005). Quantitative reconstruction of Holocene climate from the Chuna Lake pollen record, Kola Peninsula, northwest Russia. The Holocene. V. 15. № 1. P. 141–148.
  85. http://dx.doi.org/10.1191/0959683605hl793rr
  86. Stuiver M., Reimer P.J. (1993). Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon. V. 35. № 1. P. 215–230.
  87. https://doi.org/ 10.1017/S0033822200013904
  88. Timireva S.N., Filimonova L.V., Zyuganova I.S. et al. (2022). Environmental changes in the Tersky Coast of White Sea (Kola Peninsula) during the Holocene inferred from multy-proxy study of the Kuzomen Moch peatland. Geomorfologiya. № 3. P. 39–50. (in Russ.) https://doi.org/10.31857/S0435428122030178
  89. Ufimtsev G.F. (1984). Tektonicheskii analiz rel’efa (na primere Vostoka SSSR) (Tectonic relief analysis (on the example of the East of the USSR)). Novosibirsk: Nauka (Publ.). 184 p. (in Russ.)
  90. van de Plassche O. (1995). Evolution of the intra-coastal tidal range in the Rhine-Meuse delta and Flevo Lagoon, 5700–3000 years cal B.C. In: Marine Geology. Coastal Evolution in the Quaternary: IGCP Project. V. 274 (124). P. 113–128. https://doi.org/10.1016/0025–3227(95)00035–W
  91. Vareychuk N.S., Ignatov E.I. (1989). Geomorphological map of the bottom of the White Sea. Geomorfologiya. № 1. P. 67–72. (in Russ.)
  92. Wanner H., Beer J., Butikofer J. et al. (2008). Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. V. 27. P. 1791–1828. https://doi.org/10.1016/j.quascirev.2008.06.013
  93. White Sea map ru.png [Electronic resource]. URL: https://commons.wikimedia.org/w/index.php?curid=12404892 (access date: 01.01.2022).
  94. Witkowski A., Lange-Bertalot H., Metzeltin D. (2000). Diatom flora of marine coasts I. Ruggell: A.R.G. Gantner Verlag K.G. 925 p.
  95. Yermolov A.A. (2010). Geomorphology of the Kola Peninsula shores in the White Sea. Geomorfologiya. № 1. P. 36–42. (in Russ.) https://doi.org/10.15356/0435–4281–2010–1–36–42
  96. Yevzerov V.Ya., Nikolayeva S.B. (2000). Belts of marginal glacial formations of the Kola region. Geomorfologiya. № 1. P. 61–73. (in Russ.)
  97. Zaretskaya N., Korsakova O., Molodkov A. et al. (2022). Early Middle Weichselian in the White Sea and adjacent areas: Chronology, stratigraphy and palaeoenvironments. Quat. Int. V. 632. P. 65–78. https://doi.org/10.1016/j.quaint.2022.05.007
  98. Zaretskaya N.E. (2018). The Holocene history of the North Dvina River delta. Geomorfologiya. № 1. P. 3–17. (in Russ.) https://doi.org/10.7868/S0435428118010017
  99. Zaretskaya N.E., Repkina T.Yu. (2015). New data on the Holocene history of the Tersky shore, White Sea. In: Geologiya morei i okeanov. Materialy XXI Mezhdunar. nauch. konf. (Shkoly) po morskoi geologii. T. 3. Moscow: GEOS (Publ.). P. 185–189. (in Russ.)
  100. Zaretskaya N.E., Ludikova A.V., Shvarev S.V. et al. (2020). Palaeoseismic fault trenches as unique archives of the White Sea Holocene history. Geomorfologiya. № 4. P. 45–57. (in Russ.) https://doi.org/10.31857/S0435428120040112
  101. Zenkovich V.P. (1962). Osnovy ucheniya o razvitii morskikh beregov (Fundamentals of the doctrine of the development of sea coasts). Moscow: AN SSSR (Publ.). 710 p. (in Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the study area (а) and factual material (б, в). Areas: 1 — regional morphotectonic analysis and identifying ancient coastlines on the base of remote sensing data; 2 — field work, detailed morphotectonic and morpholithodynamic mapping; 3 — unmanned aerial vehicle (UAV) survey; 4 — lines of trigonometric leveling profiles and their numbers; positions of sections and boreholes and their numbers: 5 — this work, 6 — (Zaretskaya, Repkina, 2015), 7 — (Elina et al., 2005), 8 — (Agafonova et al., 2020), 9 — (Repkina et al., 2022); 10 — (Ilyashuk et al., 2005), 11–12 — (Koshechkin et al., 1973): sections of Late Glacial and early Holocene deposits (11 — varved clays, 12 — sands, sandy silts, clays), 13 — (Lunkka et al., 2018), 14 — (Korsakova et al., 2019; Zaretskaya et al., 2022), 15 — (Timireva et al., 2022). Geographical background: (а) — (White Sea ..., 2022), (б, в) — (EtoMesto..., 2022).

Download (960KB)
3. Fig. 2. Regional morphotectonic pattern of the Varzuga lower reaches. (а) — lineaments identified by the results of analysis of the satellite images Landsat ETM+ and the digital elevation model ArcticDEM; (б) — morphotectonic zoning; (в) — the compare of the main morphotectonic elements with faults identified by geological and geophysical methods. 1 — morpholineaments; 2 — morphoisohypses (color background with height gradation; at 10-meter intervals); 3 — isobates; hierarchy of morpholineaments: 4 — 300–200 km, 5 — 200–100 km, 6 — 100–50 km, 7 — 50–25 km (Shvarev, 2022); the boundaries between local (<25 km) morphotectonic blocks: 8 — of equal heights (without amplitude), 9 — of different heights (with the supposed vertical displacements); regional morphotectonic blocks: 10 — Babozerskaya step (I), 11 — Primorskaya step (II), 12 –Belomorskaya step (III); borders: 13 — of the regional morphotectonic blocks, 14 — of the Nizhnevarzugskaya estuary depression; 15 — the Nizhnevarzugskaya estuary depression (НД): А — the upper segment, Б — the middle segment, В — the lower segment; faults: 16 — from the geological survey data (Selivanovskaya, Vrachinskaya, 1976): a — tectonic contacts, б — mylonitization zones, 17 — from summarizing of geological and geophysical data, by (Shenkman, 1991), 18 — by (Mitrofanov, 2001): a — main, б — secondary, 19 — by (Bogdanov et al., 2001): a — main, б — secondary; 20 — by (Baluev et al., 2012): a — main, normal faults, non-active, б — the same, activated, в — others with unspecified kinematics.

Download (1MB)
4. Fig. 3. Morphotectonic pattern (а) and relief structure (б) of the Varzuga River area. (а) — 1 — elementary morpholineaments; local morpholineament zones separating blocks: 2 — of the same height, 3 — of different heights (with the suppposed vertical displacements); 4 — the border of the Nizhnevarzugskaya estuary depression; 5 — the assumed boundaries of blocks within it; 6 — the border of the Primorsky and Belomorskaya steps; the main blocks of the Nizhnevarzugskaya depression: 7 — Western (A), 8 — Eastern (B), 9 — Valley (C), 10 — Coastal (D), 11 — Estuarine (E); 12 — elements of the hydrographic network; 13 — isohypses: a — 5 m, b — 10 m. (б) — 1 — boundaries of surfaces of glacial and glaciofluvial genesis; 2 — boundaries of terraced surfaces of various genesis and/or marine terraces at heights less than 55 m; back seam of alluvial-marine and alluvial terraces at heights: 3 — 10–16 m, 4 — less than 10 m; 5 — boundaries of areas of intensive wind blow. Numbers in italics — height above sea level (m). Genetic types of shores: 6 — abrasion and abrasion-accumulative, 7 — accumulative. Directions: 8 — alongshore sediment flows, 9 — transverse flows, 10 — runoff flow of the river Varzuga. The position of sections and boreholes (black figure in gray contour — age of the peat base, cal ka BP): 11 — this work, 12 — (Zaretskaya, Repkina, 2015), 13 — (Elina et al., 2005), 14 — (Agafonova et al., 2020), 15 — (Repkina et al., 2022), 16 — (Timireva et al., 2022). Rose diagram: (I) — prevailing wind directions and speed (m/s) and (II) — directions of approach of waves according to HMS Kashkarantsy (Atlas…, 2022). The black outline shows the position of fig. 4.

Download (505KB)
5. Fig. 4. Relief of the junction zone of A, C and E blocks on the right bank of the Varzuga River. Relief types (1–12). Glacial relief: not changed by coastal-marine processes: 1 — swampy moraine plains (≥35–40 m a. s. l.), 2–4 — swampy terrace-like surfaces with individual hills and ridges of glacial origin (at altitudes: 2 — 35–40, 3 — 30–35, 4 — 25–30 m a. s. l.); altered by aeolian processes: 5 — kame terraces and kames, overblown, and swamped in depressions (25–40 m a. s. l.); altered by coastal processes: 6 — kame surfaces smoothed in the coastal zone and overblown (20–23 m a. s. l.). Coastal-marine relief. Marine terraces: 7 — swampy, with coastal ridges (up to 0.5 m), covered with peat (at altitudes of 20–23 m a. s. l.); 8 — with significantly overblown coastal ridges (up to 1.5 m), dry (at altitudes of 15–20 m a. s. l.); 9–10 — with overblown coastal ridges (up to 0.5, rarely up to 1 m) and slightly swampy depressions between them (at heights: 9 — 15–20, 10 — 10–14 m a. s. l.). Alluvial-marine terraces: 11 — marshy, with ridges and oxbow depressions (at altitudes of 10–16 m above sea level). Eolian relief: 12 — active dunes (25–35 m a. s. l.). Complexes and separate landforms. Raised coastlines: 13 — mostly accumulative; 14 — mainly abrasion; 15 — abrasion-erosion; 16 — individual coastal ridges; 17 — ridges on the kame surface (relative height up to 7 m). 18 — geomorphological boundaries. The arrows show the direction of stream flow. The position of the sections and boreholes (black figure in gray contour — age of the peat base, cal ka BP): 19 — this work, 20 — (Zaretskaya, Repkina, 2015), 21 — (Elina et al., 2005), 22 — (Agafonova et al., 2020), 23 — (Timireva et al., 2022).

Download (913KB)
6. Fig. 5. Integrated sections of the Holocene deposits within the A, C and E blocks on the right bank of the Varzuga River.  Legend: 1 — peat; 2 — sand with charcoal fragments; 3 — sand; 4 — sandy silt; 5 — silt; 6 — till; 7 — 14С age (cal. BP); sedimentary setting according to diatom analysis: 8 — coastal-marine, 9 — transitional from coastal-marine to freshwater, 10 — freshwater; sedimentary setting based upon the plant macrofossil analysis (Elina et al., 2005; Tiimireva et al., 2022): 11 — lacustrine, 12 — palustral. Block edges and location of the sections see on fig. 3.

Download (426KB)
7. Fig. 6. Image of the relief of the coast in the area of Cape Korabl on Orthophoto mosaic (а) and DEM (б). The blue outline shows the boundary of the UAV survey area. The red lines are the positions of the profiles built according to the DSM (A–D) and trigonometric leveling data (E). The numbers indicate: 1 — tidal littoral, 2 — beach, 3 — the largest abrasion cliffs, 4 — some coastal ridges. Geographic background — image Yandex-Sputnik.

Download (868KB)
8. Fig. 7. Transverse profiles of the coast in the area of Cape Korabl, built according to DSM (A–D) and trigonometric leveling data (E) (see the position of the profiles in fig. 6). Black arrows show the foot of abrasion cliffs and concave bends of the profile, white arrows show large coastal ridges (digital symbol — average height, m a. s. l.).

Download (576KB)
9. Fig. 8. Transverse profile of the coast in the Podturok area, built according to trigonometric leveling data (profile F in fig. 1, (в)). White arrows show areas of change in the height of coastal ridges (figure – average height, m a. s. l.).

Download (648KB)
10. Fig. 9. Terrace sediment sections 7–8 m above sea level in the Chevruy area. Legend: 1 — sand; 2 — peat; 3 — peaty sand; 4 — charcoal fragments; 5 — brickstone shards; 6 — 14C sampling site and date. See the position of the sections in fig. 1, (в).

Download (514KB)
11. Fig. 10. Climatic conditions (a–б), changes in the relative sea level (в) and coastal relief-forming processes (г) in the estuarine area of the Varzuga River in the Late Glacial and Holocene. (а) — The duration of the ice period in the sea (months) (Novichkova, 2008).  (б) — Changes in the average air temperature in July (°C) and effective Humidity in the Varzuga River area according to the analysis of the bottom sediments of the Lake Berkut, see fig. 1, (б) (Ilyashuk et al., 2005). Modern temperature values are marked with black arrows. The dynamics of effective humidification is shown by colored lines: green — high, yellow — low.  (в) — RSL position indicators. Dates from sediments accumulated: 1–2 — above mean sea level (1 — peat, 2 — gyttia); 3 — in the interval of tidal fluctuations or in post-isolation basins with occasional splashes of salt water (peat); 4 — indicators of the activity of coastal eolian processes (sandy peat) (number — section/sample). The color of the icons (1–4) shows the position of the samples within the morphostructural blocks (A, C, E). RSL change curve: 5 — confirmed by dating of deposits, 6 — estimated; 7 — estimated interval of RSL fluctuations; 8 — the position of the ancient coastlines according to the data of instrumental measurements and field observations, digital number — the height above sea level; 9 — stages of RSL change according to (Korsakova, 2022): I — Late Glacial transgression; II — glacioisostatic regression; Middle Holocene transgression: III — beginning, IV — end; V — Late Holocene regression.  (г) — Rhythms of coastal relief-forming processes. Activation of: 10 — accumulative coastal processes, 11 — alluvial-marine accumulation in river estuaries, 12 — aeolian processes; subsidence: 13 — aeolian processes. The sign (*) indicates data (Timireva et al., 2022).

Download (273KB)
12. Fig. 11. Schematic diagram of the coastal development of the Varzuga River mouth in the Late Glacial and Holocene: (a) — Late Glacial transgression maximum, (б–в) — Middle Holocene transgression, (г) – Late Holocene regression, (д) — modern conditions (black number — time slice, cal. ka BP; blue – sea level position, m (Baltic system); red — duration of the ice-free period, months (Novichkova, 2008; Polyakova et al., 2014; Novichkova, Polyakova, 2008).  Genetic types of coasts (1–8): 1 — icy, created by thermal and mechanical action of water masses, 2 — predominantly abrasional-denudational created in terrigenous rocks by processes of physical weathering and weakened impact of waves, 3–6 — created by wave processes (3 — mainly abrasion, worked out in terrigenous rocks and boulder loams, 4 — abrasion-accumulative, with cliffs carved in terrigenous rocks and boulder-pebble beaches, 5 — abrasion-accumulative, with erosion scarps, worked out in sandy glaciofluvial deposits, and sandy beaches, 6 — accumulative, with sandy beaches and foredunes), 7 — predominantly erosive-accumulative, created by runoff and tidal currents, in larger areas — with the participation of waves, 8 — separate beach ridges. Elements of lithodynamics (9–12). Direction of sediment flows: 9 — alongshore, 10 — transverse; 11 — runoff flow of the Varzuga River, 12 — sediment flow from the melting ice. Relief types and geomorphological landscapes (13–16): 13 – areas of dead ice distribution (areal deglaciation), 14 — glacial and glaciofluvial plains and terraced surfaces without signs of wave processing, 15 — marine terraces, 16 — alluvial-marine terraces. Landforms and landscapes (17–27). Late Pleistocene, glacial and glaciofluvial (according to Hättestrand et al., 2007; Boyes et al., 2021; Korsakova, 2022, with changes): 17 — moraine ridges, 18 — lakes, 19 — runoff channels, 20 — areas of glaciofluvial forms’ distribution; 21 — possible position of periglacial and/or subglacial basins according to the analysis of sections (Koshechkin et al., 1973; Lunkka et al., 2018; Korsakova et al., 2019; Zaretskaya et al., 2022). Formed or changed in the Holocene. Glaciofluvial landforms modified by coastal-marine processes: 22 — wind-blown, 23 — flooded, 24 — flooded, and then winnowed; 25 — a complex of accumulative and deflationary aeolian forms (Kuzomensky sands); 26 — active dunes; 27 — estuary fan of the Varzuga River (according to Eichgorn et al., 1976; Nevessky et al., 1977). Elements of morphostructure (28–30). Boundaries: 28 — regional morphotectonic blocks (I — Babozero step, II — Primorsky step, III — White Sea step), 29 — Nizhnevarzugskaya depression. Other symbols: 30 — possible position of the border of the Varzuga River estuary (fragments (б–г)).

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies