Glacial relief of the central part of the Kola Region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Improvement in quality of digital elevation models and satellite images of the Earth’s surface led to a tendency to interpret them without sufficient confirmation by geological research methods. At the same time, the geological data is critical for the interpretation of genesis of accumulative glacial landforms and regional landscape reconstruction during the last glaciation. The article provides a classification and geologic structure of the glacial relief of one of the key areas in the Kola region. New data were obtained using morphometric analysis of relief, geological, structural analysis of glacial landforms, petrographic analysis of coarse glacial deposits, and the study of lake sediments. Two bands of glacial accumulative relief were identified in the study area.

The first band forms a parallel ridge relief on the southern slope of the Lovozero Tundra. It represents the formations of a lateral moraine formed at the edge of a glacier moving from the west to the east along the slope. Also a hummocky-ridge relief along the slopes of the Lovozero, Panskie, and Fedorova Tundras that consist of terminal moraines is included in this band. The moraines are composed of dislocated limno- and fluvioglacial deposits, dump and ablative moraines.

The second band is formed by three subparallel chains of ridge-hummocky relief. They include folded and imbricated-thrust glaciotectonically deformed deposits. Fluvioglacial deposits are developed on the distal slope of the outer chain.

Both bands of glacial relief are associated with formation of marginal landforms during two stages of glacial retreats. Analysis of deglaciation models of the last ice sheet in the Kola and adjacent regions and data on the position of known marginal glacial formations made it possible to compare the stages with the final episodes of the Luga (Karelian) and Neva (Syamozero) Stages. The information obtained reveals more details about the stages of development of the last ice sheet and the deglaciation pattern of the Kola region in the Late Glacial.

Full Text

Restricted Access

About the authors

A. A. Vashkov

Geological Institute of the Kola Scientific Centre of RAS

Author for correspondence.
Email: a.vashkov@ksc.ru
Russian Federation, Apatity

O. Yu. Nosova

Geological Institute of the Kola Scientific Centre of RAS

Email: a.vashkov@ksc.ru
Russian Federation, Apatity

D. S. Tolstobrov

Geological Institute of the Kola Scientific Centre of RAS

Email: a.vashkov@ksc.ru
Russian Federation, Apatity

References

  1. Aboltynš O.P. (1989). Glyatsiostruktura i lednikovyi morfogenez (Glaciostructure and glacial morphogenesis). Riga: Zinatne (Publ.). 284 p. (in Russ.)
  2. Arslanov Kh.A., Tertychnaya T.V., Chernov S.B. (1993). Problems and methods of dating low activity samples by liquid scintillation counting. Radiocarbon. V. 35. P. 393–398.
  3. Astakhov V., Shkatova V., Zastrozhnov A., Chuyko M. (2016). Glaciomorphological Map of the Russian Federation. Quat. Int. V. 420. P. 4–14. http://doi.org/10.1016/ j.quaint.2015.09.024
  4. Benn D.I. (2013). Till fabric analysis. In: Encyclopedia of Quaternary Science. Glacial Landforms, Sediments. 2nd Ed. Elsevier. P. 76–80. https://doi.org/10.1016/b978-0-444-53643-3.00087-x
  5. Benn D.I., Ballantyne C.K. (1993). The description and representation of particle shape. Earth Surface Processes and Landforms. V. 18. № 7. P. 665–672.
  6. Benn D.I., Evans D. J .A. (1998). Glaciers and Glaciation. London: Arnold. 734 p.
  7. Bogdanov Yu.B. (Ed.). (2012). Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1 000 000 (tret’e pokolenie). Ser. Baltiiskaya. List Q–(35), 36 (Apatity). Ob”yasnit. zapiska (State Geological Map of the Russian Federation. Scale 1:1 000 000 (third edition). Baltic series. Sheet Q-(35), 36 (Apatity). Explanatory note). St. Petersburg: Kartograficheskaya fabrika VSEGEI (Publ.). 456 p. (in Russ.)
  8. Boyes B.M., Linch L.D., Pearce D.M., Nash D.J. (2022). The last Fennoscandian Ice Sheet glaciations on the Kola Peninsula and Russian Lapland (Part 2): Ice sheet margin positions, evolution, and dynamics. Quat. Sci. Rev. V. 300. http://doi.org/10.1016/j.quascirev.2022.107872
  9. Boyes B.M., Pearce D.M., Linch L.D. (2021). Glacial geomorphology of the Kola Peninsula and Russian Lapland. J. of Maps. V. 17:2. P. 497–515. http://doi.org/10.1080/17445647.2021.1970036
  10. Bronk Ramsey C. OxCal 4.4 [Electronic resource]. URL: http://c14.arch.ox.ac.uk (accessed on 14.10.2020).
  11. Dedkov N.S., Iljin V.A., Gorbunov E.O. (1989). Karta chetvertichnykh otlozhenii s elementami geomorfologii Murmanskoi oblasti (The Map of Quaternary deposits of the Murmansk region with elements of geomorphology). V.Ya. Yevzerov (Ed.). Apatity: GI KSC RAS (Publ.). (in Russ.)
  12. Ekman I., Iljin V. (1991). Deglaciations the Younger Dryas End Moraines and their Correlation in Karelian A.S.S.R. and adjacent Areas. In: Eastern Fennoscandian Younger Dryas End Moraines. H. Rainio, M. Saarnisto (Eds.). Guide 32. P. 73–99.
  13. Geology Page. OpenStereo. Available online: https://www.geologypage.com/2013/07/openstereo.html (accessed on 12.07.2021)
  14. Grave M.K., Yevzerov V.Ya. (1964). The main stages of the formation of the relief and friable deposits of the Lovozero Tundra. In: Chetvertichnye otlozheniya i gruntovye vody Kol’skogo poluostrova. P. 12–29. (in Russ.)
  15. Grosswald M.G. (2001). The Late Weichselian Barents-Kara Ice Sheet: In defense of a maximum reconstruction. Russian Journal of Earth Sci. V. 3. № 6. P. 427–452.
  16. Hättestrand C., Clark C.D. (2006). The glacial geomorphology of Kola Peninsula and adjacent in the Murmansk Region. Journal of Maps. V. 2:1. P. 30–42. https://doi.org/ 10.4113/jom.2006.41
  17. Hughes A.L.C., Gyllencreutz R., Lohne Ø.S. et al. (2015). The last Eurasian ice sheets — a chronological database and time-slice reconstruction, DATED-1. Boreas. V. 45. Iss. 1. P. 1–45. http://doi.org/10.1111/bor.12142
  18. Kajrukštis L.A., Basalykas A.B., Mikalauskas A.P. et al. (1983). Assessment of the dissection of the Lithuanian relief for the purposes of modeling regional development. Lietuvos TSR Mokslų Akademijos Darbai. Serija B. № 5. P. 85–93. (in Russ.)
  19. Kalm V. (2012). Ice-flow pattern and extent of the last Scandinavian Ice Sheet southeast of the Baltic Sea. Quat. Sci. Rev. V. 44. P. 51–59. http://doi.org/ 10.1016/j.quascirev.2010.01.019.
  20. Kaplyanskaya F.A., Tarnogradskiy V.D. (1993). Glyatsial’naya geologiya: Metodicheskoe posobie po izucheniyu lednikovykh obrazovanii pri geologicheskoi s”emke krupnogo masshtaba (Glacial geology: Methodical textbook for study of glacial formations at the large-scale geological survey). St. Petersburg: Nedra (Publ.). 328 p. (in Russ.)
  21. Karpukhina N.V. (2013). Characteristic features of the ostashkov ice sheet degradation within Chudsko-Pskovskaya lowland. Geomorphologiya. № 4. P. 38–47 (in Russ.)
  22. Kolka V., Korsakova O., Nikolaeva S., Yevzerov V. (2008). The Late Pleistocene interglacial, late glacial landforms and Holocene neotectonics of the Kola Peninsula. Geological Institute of KSC RAS. ICG excursion. № 34. August 14–23. Apatity. 72 p.
  23. Kolka V.V. (1998). The Munozero Insular Upland. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. № 1 (3). P. 79–88 (in Russ.)
  24. Kolka V.V., Yevzerov V.Ya., Moller J.J., Corner G.D. (2013). The Late Weichselian and Holocene European Russia: glacial landforms from the Bølling–Allerød Interstadial relative sea-level change and isolation basin stratigraphy at the Umba Settlement, southern coast of Kola Peninsula). Izvestiya RAN. Seriya geograficheskaya. № 1. P. 73–88. (in Russ.)
  25. Komarovskiy M.E. (1996). Minskaya i Oshmyanskaya vozvyshennosti (The Minsk and Oshmjany Uplands). Minsk: Institute of Geological Sciences of the Academy of Sciences of Belarus (Publ.). 128 p. (in Russ.)
  26. Korsakova O., Tolstobrov D., Nikolaeva S. et al. (2020). Lake Imandra depression in the Late Glacial and early Holocene (Kola Peninsula, north-western Russia). Baltica. V. 3 (2). P. 177–190. https://doi.org/10.5200/baltica.2020.2.5
  27. Korsakova O., Vashkov A., Nosova O. (2023). European Russia: glacial landforms from the Bølling_Allerød Interstadial. In: European Glacial Landscapes. The Last Deglaciation. D. Palacios, P.D. Hughes, J.M. Garcia-Ruiz, N. Andres (Eds.). Elsevier (Publ.). P. 305–310. https://doi.org/10.1016/B978-0-323-91899-2.00014-0
  28. Korsakova O.P., Kolka V.V., Tolstobrova A.N. et al. (2016). Lithology and postglacial stratigraphy of bottom sediments in isolated basins of White Sea coast exemplified by a small lake in the Chupa settlement area (northern Karelia). Stratigrafiya. Geologicheskaya korrelyatsiya. V. 24. № 3. P. 81–101. (in Russ.).
  29. https://doi.org/ 10.1134/S0869593816030035
  30. Koshechkin B.I. (1979). Golotsenovaya tektonika vostochnoi chasti Baltiiskogo shchita (The Holocene tectonics of the Eastern part of the Baltic Shield). Leningrad: Nauka (Publ.). 160 p. (in Russ.)
  31. Krikunova A.I., Kostromina N.A., Savelieva L.A. et al. (2022). Late-and postglacial vegetation and climate history of the central Kola Peninsula derived from a radiocarbon-dated pollen record of Lake Kamenistoe. Palaeogeography, Palaeoclimatology, Palaeoecology. V. 603.
  32. https://doi.org/10.1016/j.palaeo.2022.111191
  33. Lavrushyn Yu.A. (1976). Stroenie i formirovanie osnovnykh moren materikovykh oledenenii (Structure and forming of basal moraines of continental glaciations). Moscow: Nauka (Publ.). 237 p. (in Russ.)
  34. Lenz M., Savelieva L., Frolova L. et al. (2020). Lateglacial and Holocene environment history of the central Kola region, northwestern Russia revealed by sediment succession from Lake Imandra. Boreas. V. 50. Iss. 1. P. 76–100. https://doi.org/10.1111/bor.12465.
  35. Lundqvist J. (1979). Morphogenetic classification of glaciofluvial deposits. Sveriges geologiska undersökning: Upssala. 72 p.
  36. Niemelä J., Lukashov A., Ekman I. et al. (1993). The map of Quaternary deposits of Finland and northwestern part of Russian Federation and their Resources. M 1:1 000 000. Geological Survey of Finland.
  37. Porter С., Morin P., Howat I. et al. (2018). ArcticDEM, Harvard Dataverse. V1. [Electronic data]. URL: https://doi.org/10.7910/DVN/OHHUKH (accessed date: 09.02.2022)
  38. Reimer P.J., Austin W.E., Bard E. et al. (2020). The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. V. 62. № 4. P. 725–757. https://doi.org/10.1017/RDC.2020.41
  39. Serebryannyi L.R. (1978). Dinamika pokrovnogo oledeneniya i glyatsioevstaziya v pozdnechetvertichnoe vremya (Dynamics of Ice Sheet and Glacio-Eustace in the Late Quaternary). Мoskow: Nauka (Publ.). 270 p. (in Russ.)
  40. Strelkov S.A., Yevzerov V.Ya., Koshechkin B.I. et al. (1976). Istoriya formirovaniya rel’efa i rykhlykh otlozhenii severo-vostochnoi chasti Baltiiskogo shchita (The history of the formation of the relief and loose deposits of the northeastern part of the Baltic Shield). Leningrad: Nauka (Publ.). 164 p. (in Russ.)
  41. Stroeven A.P., Hätterstrand C., Kleman J. et al. (2016). Deglaciation of Fennoscandia. Quat. Sci. Rev. V. 147. P. 91–121. https://doi.org/10.1016/j.quascirev.2015.09.016
  42. Tolstobrova A.N., Tolstobrov D.S., Kolka V.V., Korsakova O.P. (2016). Glacial and postglacial history of Lake Osinovoye (Kola Region) inferred from sedimentary diatom assemblages. Trudy Karel’skogo nauchnogo tsentra RAN. № 5. P. 106–116. (in Russ.). https://doi.org/10.17076/lim305
  43. Vasilyeva A.V., Savel’eva L.A., Tolstobrov D.S., Petrov A.Yu. (2022). Reconstruction of the natural environment of the Tsaga-3 lake region (Kola Peninsula) in Holocene according to integrated investigations. In: Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. V. 9. P. 48–53. (in Russ.). http://doi.org/10.24412/2687-1092-2022-9-48-53
  44. Velichko A.A., Faustova M.A., Pisareva V.V., Karpukhina N.V. (2017). History of the Scandinavian ice sheet and surrounding landscapes during the Valdai Ice Age and the Holocene. Ice and Snow. № 57 (3). P. 391–416. https://doi.org/10.15356/2076-6734-2017-3-391-416 (in Russ.).
  45. Winsborrow M.C.M., Andreassen K., Corner G.D., Laberg J.S. (2010). Deglaciation of a marine-based ice sheet: Late Weichselian palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore and offshore glacial geomorphology. Quat. Sci. Rev. V. 29. P. 424–442. https://doi.org/10.1016/j.quascirev.2009.10.001
  46. Włodarski W., Godlewska A. (2016). Sedimentary and structural evolution of a Pleistocene small-scale push moraine in eastern Poland: New insight into paleoenvironmental conditions at the margin of an advancing ice lobe. Quat. Sci. Rev. V. 146. P. 300–321. https://doi.org/10.1016/ j.quascirev.2016.06.014
  47. Yaduta V.A., Moskalenko P.E. (2003). The Neotectonic scheme. Gosudarstvennaya geolo-gicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1 000 000 (novaya seriya). List Q–(35)–37 (Kirovsk). Bogdanov Yu.B. (Ed.). St. Petersburg: Kartograficheskaya fabrika VSEGEI (Publ.). (in Russ.)
  48. Yevzerov V.Ya. (2010). Ice-sheet and mountain glaciers marginal deposits in the area of Seidozerskaya depression (Lovozersky massive, Kola Peninsula). Geomorphologiya. № 2. P. 55–59. (in Russ.)
  49. Yevzerov V.Ya., Gorbunov E.O., Kolka V.V. (1993). Marginal glacial formations of the Youn-ger Dryas in the northern and central parts of the Kola Peninsula. In: Chetvertichnye otlozheniya i noveishaya tektonika lednikovykh oblastei Vostochnoi Evropy. Apatity: KNTS RAN (Publ.). P. 26–38. (in Russ.)
  50. Yevzerov V.Ya., Koshechkin B.I. (1980). Paleogeografiya pleistotsena zapadnoi chasti Kol’skogo poluostrova (Pleistocene paleogeography of the western part of the Kola Peninsula). Leningrad: Nauka (Publ.). 104 p. (in Russ.)
  51. Yevzerov V.Ya., Nikolaeva S.B. (2000). Marginal glacial formations of Kola region, north-west Russia. Geomorphologiya. № 1. P. 61–73. (in Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the study area in the Kola region. The black lines show the boundaries of the last ice sheet during the stages: Kr — Krestsy, Lg — Luga (Keiva I, Karelia), Nv — Neva (Keiva II, Syamozero), SpI, SpII — Salpausselka I and II, compiled using (Astakhov et al., 2016; Korsakova et al., 2023). The dotted lines are the proposed boundaries. Transparent blue line — the north margin of the White Sea Ice Stream. Transparent blue arrows — flow directions of the Fennoscandian Ice Sheet (by Yevzerov, Nikolaeva, 2000; Boyes et al., 2022). The black short lines — subglacial lineations (by Bogdanov, 2012; Boyes et al., 2021b). Transparent violet outline — the area without glacial deposits in the central part of the Kola Peninsula (by Dedkov et al, 1989; Niemela et al., 1993; Bogdanov, 2012).

Download (754KB)
3. Fig. 2. Glaciomorphological scheme of the study area (see location in fig. 1). Relief associated with uplifts of the pre-Quaternary surface: 1 — low mountains (bedrock), not covered by Quaternary deposits (1a in table 1); 2 — medium and large hills covered by Quaternary deposits (2b); Flat terrain: 3 — moraine plain (2а), 4 — the same, with drumlins and fluting moraines (2b), 5 — glaciofluvial plains (2с), 6 — glaciolacustrine plains (2d); Ridge and ridge-hummocky glacial relief: 7 — parallel ridge relief on the slopes of the low mountains (3а), 8 — hummock-ridge relief, near the slopes of the low mountains (3b), 9 — ridge-hummocky relief (3с), 10 — hummocky moraines and ring-ridge forms (3d), 11 — moraines of mountain glaciations (3e); Individual landforms: 12 — kames (a) and glaciodiapirs (b) (4а), 13 — eskers (4b); 14 — meltwater channels; 15 — boundaries of the distinguished bands A and B (a) and chains subparallel to them (b); 16 — points of studying and their numbers, reconstruction of the direction of the glacier pressure (a) and the direction of the melt water flow (b). Studied lake basins have Roman numerals. White lines — the position of the watersheds of the river basins: Умб — Umba, Врз– Varzuga, Врн — Voronya. The red rectangle is a key area for morphometric studies.

Download (2MB)
4. Fig. 3. The structure of the hummock-ridge relief: A — a ridge near the southwestern slope of the Lovozero Tundra, B — a hummock near the northwestern slope of the Panskiye Tundras (points 4 and 5, respectively, in fig. 2). Diamicton: 1 — diamicton with foliated structure (lines show orientation of foliation), 2 — massive diamicton; 3 — boulders with pebbles and gravel; 4 — pebbles with boulders and gravel; 5 — gravel with pebbles; 6 — interbedding of pebbles and gravel with fine-to-coarse grained sand; sands: 7 — sand medium-coarse grained, bedded, 8 — sand fine grained, bedded, 9 — sand not bedded, 10 — sand with peat lenses, 11 — sand fine grained, clayey; 12 — silt; 13 — interbedding of silt and sand; 14 — clay; 15 — faults; 16 — thrust planes and directions of displacement; 17 — ice wedges; 18 — talus; on the structural diagrams: 19 — reconstruction of stresses during the formation of deposits, 20 — reconstruction of glacier pressure, 21 — arcs of a great circle. The color of deposits in the figures corresponds to their color in the section.

Download (544KB)
5. Fig. 4. The structure of the ridge-hummocky relief: A — glacioinjective fold in the structure of the moraine ridge (7 in fig. 2), B — glaciofold in the structure of the moraine hummock (8 in fig. 2), C — folds of the longitudinal bend and small detached masses in the diamicton covered by fluvioglacial sediments in the structure of the ridge-hummocky massif (9 in fig. 2). See symbols in fig. 3.

Download (886KB)
6. Fig. 5. Structure of the moraine ridge as part of the chain B3 (A, 11 in fig. 2); the structure of the hummock-ridge massif adjacent to the chain B2 (B, 12 in fig. 2); structure of the distal slope of the hummock-ridge massif on the Sarvanovsky Island (C, 13 in fig. 2). See symbols in fig. 3.

Download (624KB)
7. Fig. 6. Scheme of the main stages of the reduction of the last ice sheet in the central part of the Kola region: A — the beginning of the Luga Stage (15700–15000 cal. BP), B — the ending of the Luga Stage (15000–14700 cal. BP), C — the Neva Stage (14 100 –13 900 cal. BP). 1 — the ice margin and the movement direction of the active ice cover; 2 — the ice margin of during oscillations; 3 — the ice margin of mountain glaciers; 4 — areas occupied by dead ice; 5 — areas of disturbances in the ice cover; 6 — meltwater channels in the periglacial zone; 7 — periglacial lakes.

Download (2MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies