CLADOCERA COMMUNITIES OF LAKE ARCTO-PIMBERTO (NENETS AUTONOMOUS DISTRICT) IN THE MIDDLE AND LATE HOLOCENE1

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The analysis of the subfossil Cladocera community in the bottom sediments from Lake Arcto-Pimberto located in the Pechora River delta (Nenets Autonomous District) was carried out. A 95-cm-long continuous core of bottom sediments was collected in the deepest part of the lake and covers approximately 6400 years of sediment accumulation during Middle and Late Holocene. 17 cladoceran taxa were identified in the studied core. Species with Holarctic and Palearctic distributions prevailed in the lake. Most of the identified subfossil remains belong to pelagic species living in the open part of the lake. Found fragments of chitinized remains of Rhynchotalona falcata and Alonopsis elongata indicate the presence of sandy soils in the water body. The samples were dominated by Bosmina (Eubosmina) longispina and Chydorus cf. sphaericus, which are evenly distributed along the continuous sediment core. We have studied the history of the development and evolution of the lake based on changing of the taxonomic composition of microcrustaceans in the bottom sediment core. The structure of the subfossil Cladocera community stayed relatively constant. The ratio of pelagic and littoral-phytophilic taxa changed slightly. Depending on the changes in the species composition of the cladoceran assemblage, the sediment core was divided into 4 ecological zones. In the early history of sedimentation in the lake, there is a small peak in the abundance of crustaceans, followed by decrease and further gradual increase towards the upper horizons of the column. Between from 5700 cal. years BP to 2100 cal. years BP there is an increase in abundance of pelagic organisms, with a decrease in abundance of littoral taxa. This marks the presence of a well-developed pelagic part of the reservoir at that time. In the upper zones, we observe the taxonomic diversity of littoral organisms and an increase in abundance of their remains. The Shannon-Weaver species diversity Index showed a simple organization of the community of subfossil Cladocera. The Pantle and Buck saprobity Index characterized the lake as oligosaprobic, this status is maintained throughout its evolution of the lake.

Sobre autores

N. Nigmatullin

Kazan Federal University

Autor responsável pela correspondência
Email: NiMNigmatullin@kpfu.ru
Russia, Kazan

L. Frolova

Kazan Federal University

Email: NiMNigmatullin@kpfu.ru
Russia, Kazan

Bibliografia

  1. Andreev A.A., Klimanov V.A. (2000). Quantitative Holocene climatic reconstruction from Arctic Russia. J. Paleolimnol. Vol. 24. Iss 1. P. 81–91. https://doi.org/10.1023/A:1008121917521
  2. Andreeva A.A., Tarasov P.E., Klimanovc V.A. et al. (2004). Vegetation and climate changes around the Lama Lake, Taymyr Peninsula, Russia during the Late Pleistocene and Holocene. Quat. Int. Vol. 122. Iss. 1. P. 69–84. https://doi.org/10.1016/j.quaint.2004.01.032
  3. Artyukhov V.G., Dobrovolsky G.V., Marfenin N.N. et al. (Eds.). (2002). Geografiya i monitoring bioraznoob-raziya (Geography and monitoring of biodiversity). M.: Publishing House of the Scientific and Scientific-Methodical Center Publ. (Publ.). 432 p. (in Russ.)
  4. Babushkin A.G. (2007). Gidrokhimicheskii monitoring po-verkhnostnykh vod Khanty-Mansiiskogo avtonomnogo okruga – Yugry (Hydrochemical monitoring of surface waters of Khanty-Mansiysk Autonomous Okrug – Yugra). Novosibirsk: Nauka (Publ.). 152 p. (in Russ.)
  5. Bledzki L.A., Rybak J.I. (2016). Freshwater crustacean zooplankton of Europe. Springer International Publishing Switzerland. 923 p.
  6. Cherevichko A.V., Melnik M.M., Prokin A.A. et al. (2011). Current state of zooplankton and macrozoobenthos of Pechora lower reaches (Nenets Autonomous Area). Voda: himiya i ekologiya. No. 9. P. 53–59. (in Russ.)
  7. Fefilova E.B., Kononova O.N. (2019). Diversity of planktonic fauna of the Pechora River Delta. Sibirskii ekolo-gicheskii zhurnal. Vol. 3. P. 314–326. (in Russ.)
  8. Fefilova E.B., Kononova O.N. (2018). New data on zooplankton structure of the Pechora delta. Izvestiya Komi Respublikanskogo otdeleniya RGO. Vol. 2. P. 56–64. (in Russ.)
  9. Flossner D. (2000). Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Leiden: Backhuys Publishers (Publ.). 428 p.
  10. Frolova L. (2016). Subfossil Cladocera (Branchiopoda, Crustacea) in climatic and palaeoenvironmental investigations in Eastern Siberia (Russia). 16th Int. Multidisciplinary Sc. GeoConf. SGEM. Vol. 2. Iss. 4. P. 601–606. https://doi.org/10.5593/SGEM2016/B42/S19.077
  11. Frolova L.A., Ibragimova A.G., Ulrich M. et al. (2017). Reconstruction of the History of a Thermokarst Lake in the Mid-Holocene Based on an Analysis of Subfossil Cladocera (Siberia, Central Yakutia). Contemp. Probl. Ecol. 2017. Vol. 10. Iss. 4. P. 423–430. https://doi.org/10.1134/S1995425517040023
  12. Frolova L.A., Nazarova L.B., Pestryakova L.A. et al. (2013). Analysis of the Effects of Climate-Dependent Factors on the Formation of Zooplankton Communities that Inhabit Arctic Lakes in the Anabar River Basin. Contemp. Probl. Ecol. Vol. 6. Iss. 1. P. 1–11. https://doi.org/10.1134/S199542551301006X
  13. Frolova L., Nigmatullin N., Frolova A. (2018). Paleolimnological studies of tundra lakes in the Pechora delta (Nenets Autonomous Region, Rassia). 18th Int. Multidisciplinary Sc. GeoConf. SGEM. Vol. 18. Iss. 5/1. P. 621–627. https://doi.org/10.5593/sgem2018/5.1/S20.080
  14. Frolova L.A., Nigmatullin N.M. (2019). First record of Phreatalona protzi (hartwig, 1900) (Branchiopoda: Anomopoda) in a tundra lake in North-East European Russia. 19th Int. Multidisciplinary Sc. GeoConf. SGEM. Vol. 19. Iss. 5.1. P. 285–290. https://doi.org/10.5593/sgem2019/5.1/S20.036
  15. Frolova L.A., Ibragimova A.G. (2015). Cladocera remains from sediments of Kilometrovoe and Kotovo lakes, Kharbey system (Bolshezemelskaya tundra). Trudy Karel’skogo nauchnogo centra RAN. Iss. 5. P. 5–17. (in Russ.). https://doi.org/10.17076/lim34
  16. Frolova L.A., Ibragimova A.G., Subetto D.A. et al. (2018). Paleoecological and Paleoclimatic Reconstructions for the Karelian Isthmus Based on the Study of Subfossil Cladocerans from Lake Medvedevskoe (Northwest Russia). Uch. Zap. Kazanskogo un-ta. Ser. estestvennye nauki. Vol. 160. Iss. 1. P. 93–110. (in Russ.)
  17. Ibragimova A.G. (2020). Tafotsenozy Cladocera (Branchiopoda, Crustacea) glyatsiogennykh ozer evropeiskoi chasti Rossii (Taphocenoses of Cladocera (Branchiopoda, Crustacea) glaciogenic lakes of the European part of Russia). PhD thesis. Kazan: KFU (Publ.). 206 p. (in Russ.)
  18. Klimenko V.V., Klimanov V.A., Sirin A.A. et al. (2001). Climate change in the west of the European part of Russia in the Late Holocene. Dokl. Earth Sci. Iss. 377. P. 190–194.
  19. Kokovkin A.V. (2016). Pechora River. Izvestiya Komi otdeleniya RGO. Vol. 1. Mat-ly Kompleksnoi Pechorskoi ekspeditsii. Syktyvkar: Geoprint (Publ.). P. 7–8. (in Russ.)
  20. Korhola A., Rautio M. (2001). Cladocera and other branchiopod crustaceans. Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research. Vol. 4. P. 125–165. https://doi.org/10.1007/0-306-47671-1_2
  21. Korosi J.B., Kurek J., Smol J.P. (2013). A review on utili-zing Bosmina size structure archived in lake sediments to infer historic shifts in predation regimes. J. Plankton Res. Vol. 35. Iss. 2. P. 1–17. https://doi.org/10.1093/plankt/fbt007
  22. Korovchinsky N.M., Kotov A.A., Sinev A.Yu. et al. (2021). Vetvistousye rakoobraznye (Crustacea: Cladocera) Severnoi Evrazii (Cladocera (Crustacea: Cladocera) Northern Eurasia). Vol. I–II. Moscow: Partnership of scientific publications KMK (Publ.). 544 p. (in Russ.)
  23. Kotov A. A., Sinev A. Ju., Glagolev S. М. et al. (2010). Vetvistousye rakoobraznye (Cladocera). Opredelitel’ zooplanktona i zoobentosa presnykh vod Evropeiskoi Rossii (Cladocera in Identification Key of zooplankton and zoobenthos of European Russia freshwater, issuel, Zooplankton). Moscow: Partnership of scientific publications KMK (Publ.). P. 151–276. (in Russ.)
  24. Lavrinenko I.A. (2018). Map of technogenic disturbance of Nenets Autonomous District. Sovr. Probl. DZZ Kosm. Vol. 15. Iss. 2. P. 128–136. (in Russ.) 10.21046/2070-7401-2018-15-2-128-136
  25. Luoto T.P., Nevalainen L., Sarmaja-Korjonen K. (2008). Multiproxy evidence for the ‘Little Ice Age’ from Lake Hamptrask, Southern Finland. J. Paleolimnol. Vol. 40. Iss. 4. P. 1097–1113. https://doi.org/10.1007/s10933-008-9216-4
  26. Lyubarsky E.L. (1974). To the methodology of express qualification and comparison of descriptions of phytocenoses. Kolichestvennye metody analiza rastitel’nosti. Ufa: BFAN USSR (Publ.). P. 39–42. (In Russ.)
  27. Manuilova E.F. (1964). Vetvistousye rachki (Cladocera) fauny SSSR (Cladocera of the fauna of the USSR). Moscow-Leningrad: Nauka (Publ.). 328 p. (in Russ.)
  28. Mineev O.Yu., Mineev Yu.N. (2002). Birds of the Pechora River delta. Russkii ornitologicheskii zhurnal. Ekspress-vypusk. Vol. 11. Iss. 183. P. 373–381. (in Russ.)
  29. Nazarova L.B., Self A.E., Brooks S.J. et al. (2017). Chiro-nomid Fauna of the Lakes from the Pechora River Basin (East of European part of Russian Arctic): Ecology and Reconstruction of Recent Ecological Changes in the Region. Contemp. Probl. Ecol. Vol. 10. Iss. 4. P. 350–362. https://doi.org/10.1134/S1995425517040059
  30. Nevalainen L., Luoto T.P., Kultti S. et al. (2011). Do subfossil Cladocera and chydorid ephippia disentangle Holocene climate trends? The Holocene. Vol. 22. Iss. 3. P. 291–299. https://doi.org/10.1177/0959683611423691
  31. Nevalainen L., Rantala M.V., Luoto T.P. (2015). Sedimentary cladoceran assemblages and their functional attributes record late Holocene climate variability in sou-thern Finland. J. Paleolimnol. Vol. 54. Iss. 2. P. 239–252. https://doi.org/10.1007/s10933-015-9849-z
  32. Nigamatzyanova G.R., Frolova L.A., Abramova E.N. (2016). Zooplankton spatial distribution in thermokarst lake of The Lena River Delta (Republic of Sakha (Yakutia). Res. J. Pharm., Biol. Chem. Sci. Vol. 7. Iss. 5. P. 1288–1297.
  33. Nigamatzyanova G., Frolova L., Kosareva L. (2018). Palynological analysis of bottom sediments of lake rubskoe (Ivanovo region, Russia). Int. Multidisciplinary Sci. GeoConf. Surveying Geology and Mining Ecology Ma-nagement, SGEM. Vol. 18. Iss. 5.1. P. 629–636. https://doi.org/0.5593/sgem2018/5.1/S20.081
  34. Nigamatzyanova G.R., Frolova L.A., Nigmatullin N.M. et al. (2020). Vegetation and climate changes in the northeast European Russia (Nenets Autonomous Okrug, Russia). 20th Int. Multidisciplinary Sci. GeoConf. SGEM. M. Vol. 20. Iss. 4.1. P. 547–552. https://doi.org/10.5593/sgem2020/4.1/s19.068
  35. Nigmatullin N., Frolova L., Gareev B. (2020). Subfossil Cladoceran from the Bottom Sediments of Lake Lebedinoe (Yamalo-Nenets Autonomous Okrug, Russia). Kazan Golovkinsky “Young Scientists” Stratigraphic Meeting. P. 143–147.
  36. Nigmatullin N., Frolova L., Nigamatzyanova G. et al. (2020). A study of zooplankton in tundra lakes of the pechora river delta (North-Eastern European Russia). 20th Int. Multidisciplinary Sci. GeoConf. SGEM. Vol. 20. Iss. 4.1. P. 289–296. https://doi.org/10.5593/sgem2020/4.1/s19.036
  37. Nigmatullin N.M., Frolova L.A. (2019). Zooplankton community structure and environmental conditions of tundra lakes in the Pechora River delta (Northern Russia). 19th Int. Multidisciplinary Sci. GeoConf. SGEM. Vol. 19. Iss. 5.1. P. 817–824.
  38. Nikonova A.N. (2016). Transformatsiya ekosistem del’ty Pechory v zone vliyaniya Kumzhinskogo gazokondensatnogo mestorozhdeniya (Nenetskii Avtonomnyi Okrug) (Transformation of Floodplain Ecosystems in the Pechora Delta within the Kumzhinsk Gas Condensate Field (Nenets Autonomous Okrug)). PhD thesis. Moscow: Institute of Geography of RAS (Publ.). 29 p. (in Russ.)
  39. Nikonova A.N. (2015). Transformation of Floodplain Ecosystems in the Pechora Delta within the Kumzhinsk Gas Condensate Field (Nenets Autonomous Okrug). Izvestiya RAN. Ser. Geograficheskaya. No. 5. P. 117–129. (in Russ.). https://doi.org/10.15356/0373-2444-2015-5-117-129
  40. Orlova Yu.S. (2013). Using of diversity indexes to analysis of algoflora of Alatyr river basin. Vest. Mordovskogo universiteta. Iss. 3–4. P. 53–57. (in Russ.)
  41. Pantle F., Buck H. (1955). Die biologische Überwachung der Gewasser und die Darstellung der Ergebnisse. Gas-Wasserfach. Vol. 96. Iss. 18. P. 604–620.
  42. Preis Yu.I., Simonova G.V., Slagoda E.A. (2016). Detailed stratigraphy and dynamics of Central Yamal Khasyrey during the late Holocene. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. Vol. 327. Iss. 10. P. 35–49.
  43. Rautio M. (2007). Cladocera S.A. Elias (ed.). Encyclopedia of Quat. Sci. Elsevier (Publ.). P. 463–472.
  44. Rautio M., Dufresne F., Laurion I. et al. (2011). Shallow Freshwater Ecosystems of the Circumpolar Arctic. Ecoscience. Vol. 18. Iss. 3. P. 204–222. https://doi.org/10.2980/18-3-3463
  45. Reimer P., Bard E., Bayliss A. et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves, 0–50 000 years cal BP. Radiocarbon. Vol. 55. Iss.4. P. 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947
  46. Salonen J.S., Seppä H., Väliranta M. et al. (2011). The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia. Quat. Res. Vol. 75. Iss 3. P. 501–511. https://doi.org/10.1016/j.yqres.2011.01.007
  47. Sarmaja-Korjonen K. (2001). Correlation of fluctuations in cladoceran planktonic: littoral ratio between three cores from a small lake in southern Finland: Holocene water-level changes. The Holocene. Vol. 11. Iss. 1. P. 53–63. https://doi.org/10.1191/0959683016770713
  48. Sarmaja-Korjonen K., Hakojärvi M., Korhola A. (2000). Subfossil remains of an unknown chydorid (Anomopoda: Chydoridae) from Finland. Hydrobiologia. Vol. 436. Iss. 1–3. P. 165–169. https://doi.org/10.1023/A:1026502219867
  49. Sarmaja-Korjonen K., Kultti S., Solovieva N. et al. (2003). Mid-Holocene palaeoclimatic and palaeohydrological conditions in northeastern European Russia: a multi-proxy study of Lake Vankavad. J. Paleolimnology. 2003. Vol. 30. P. 415–426.
  50. Semenov V.F. (2016). The study of the geomorphology of the Pechora River valley and adjacent territories. Izvestiya Komi otdeleniya RGO. Mat-ly Kompleksnoi Pechorskoi ekspeditsii. Syktyvkar: Geoprint (Publ.). Vol. 1. P. 9–25. (in Russ.)
  51. Shannon C.E., Weaver W. (1963). The mathematical theory of communication. Illinois press (Publ.). 117 p.
  52. Sinev A.Yu. (2002). A key to identifying cladocerans of the genus Alona (Anomopoda, Chydoridae) from the Russian European part and Siberia. Zoologicheskii zhurnal. Vol. 81. Iss. 8. P. 926–939. (in Russ.)
  53. Smirnov N.N. (1971). Fauna SSSR. Rakoobraznye (Fauna of the USSR. Crustaceans). Leningrad: Nauka (Publ.). Vol. 1. Iss. 2. P. 351. (in Russ.)
  54. Subetto D.A., Nazarova L.B., Pestryakova L.A. et al. (2017). Paleolimnological Studies in Russian Northern Eurasia: A Review. Contemp. Probl. Ecol. Iss. 4. P. 369–380. https://doi.org/10.1134/S1995425517040102
  55. Szeroczyńska K., Sarmaja-Korjonen K. (2007). Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society. 84 p.
  56. Valieva E., Frolova L., Nigamatzyanova G. et al. (2020). Diatoms in bottom sediments of the arctic lake in the pechora river delta (Nenets Autonomous Okrug, Russia). 20th Int. Multidisciplinary Sci. GeoConf. SGEM. Vol. 20. Iss. 4.1. P. 391–398. https://doi.org/10.5593/sgem2020/4.1/s19.049
  57. Walker M.J.C., Berkelhammer M., Bjorck S. et al. (2012). Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quat. Sci. Vol. 27. Iss. 7. P. 649–659. https://doi.org/10.1002/jqs.2565
  58. Zinnatova E., Frolova L., Kulikovskiy M. (2018). Diatom complexes in the bottom sediments of rubskoe lake (The east european plain, Russia). Int. Multidisciplinary Sci. GeoConf. Surveying Geology and Mining Ecology Management, SGEM. Vol. 18. Iss. 5.1. P. 275–282. https://doi.org/10.5593/sgem2018/5.1/S20.036

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (862KB)

Declaração de direitos autorais © Н.М. Нигматуллин, Л.А. Фролова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies