QUANTITATIVE LAWS OF A MORPOLOGICAL PATTERN FOR ABRASION SLOPES WITN A LANDSLIDE PROCESS WITHIN THE CRYOLITHOZONE (THE COASTS OF THE KANIN AND YAMAL PENINSULAS AS EXAMPLES)1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Coast landslide processes take a special place in the study and monitoring of processes in permafrost under the climate change, however, not much attention has been paid to the morphology and quantitative characteristics of the landslides. The aim of the work is to reveal quantitative relationships between the abrasion slopes and a landslide process for coasts within the cryolithozone, mainly in contact with the adjacent interfluves. The research is based on the interpretation of high-resolution space imagery at five costal sites of the Kanin and Yamal peninsulas. The study was focused on the morphological features of the upper part of the landslides at the border with the adjacent interfluve. This border is a combination of arc elements. Besides, there are arcuate residual sections of the interfluve surface, corresponding to different stages of landslide process, in some places on the slope. Analysis of the coastline from images gave us such characteristics of landslides as the length of the arcs forming the boundary, the length of the chords of the arcs, the arrows of the arcs, the average radii of curvature, the central angles of the arc, the angles of orientation of the chords with respect to the vector of the general strike of the corresponding section of the coastline. Some of these characteristics were obtained by direct measurement from satellite images, the others by calculation. The analysis included 30 samples with a volume of 103–183 elements. Statistical processing using Pearson’s goodness-of-fit test showed that in the vast majority of the sites, the distributions of the landslide upper boundary arc sizes, chords, arc arrows, and curvature radii, as well as central angles, correspond to a lognormal one. The chord orientations with respect to the strike of the site are normally distributed. The values of the distribution parameters of the studied quantitative characteristics of the landslide morphological features differ and depend on the physical-geographical and engineering-geocryological conditions of specific areas.

About the authors

A. S. Victorov

Sergeev Institute of Environmental Geoscience RAS

Author for correspondence.
Email: dist@geoenv.ru
Russia, Moscow

T. V. Orlov

Sergeev Institute of Environmental Geoscience RAS

Email: dist@geoenv.ru
Russia, Moscow

M. V. Arkhipova

Sergeev Institute of Environmental Geoscience RAS

Email: dist@geoenv.ru
Russia, Moscow

V. N. Kapralova

Sergeev Institute of Environmental Geoscience RAS

Email: dist@geoenv.ru
Russia, Moscow

V. V. Bondar

Sergeev Institute of Environmental Geoscience RAS

Email: dist@geoenv.ru
Russia, Moscow

References

  1. Aleksyutina D.M., Badina S.V., Baranskaya A.V. et al. (2020). Thermal abrasion of the seashores of the Russian Arctic: risks of oil and gas development. Osvoenie resursov nefti i gaza rossiiskogo shel’fa: Arktika i Dal’nii Vostok (ROOGD-2020): tezisy dokladov. M.: Gazprom VNIIGAZ (Publ.). P. 32. (in Russ.)
  2. Are F.E. (1980). Termoabraziya morskikh beregov (Thermal abrasion of seashores). M.: Nauka (Publ.). 160 p. (in Russ.)
  3. Belova N.G., Shabanova N.N., Ogorodov S.A. et al. (2017). Erosion of permafrost coasts of Kara Sea near Kharasavey Cape, Western Yamal. Earth’s Cryosphere. Vol. XXI. No. 6. P. 73–83. https://doi.org/10.21782/KZ1560-7496-2017-6(85-96)
  4. Günther F., Overduin P., Sandakov A. et al. (2013). Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences. No. 10. P. 4297–4318. https://doi.org/10.5194/bg-10-4297-2013
  5. Khomutov A.V., Dvornikov Yu.A., Leibman M.O. et al. (2015). Activation of thermal denudation processes in the central Yamal under the influence of climate change and technogenesis. Sovremennye problemy gidrogeologii, inzhenernoi geologii i gidrogeoekologii Evrazii: materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, g. Tomsk, 23–27 noyabrya 2015 g. Tomsk: TPU (Publ.). P. 381–384. (in Russ.)
  6. Kizyakov A.I., Leibman M.O. (2016). Criogenic relief-forming processes: a review of 2010-2015 publications. Earth’s Cryosphere. Vol. XX. No. 4. P. 45–58. https://doi.org/10.21782/KZ1560-7496-2016-4(45-58)
  7. Kizyakov A.I., Zimin M.V., Leibman M.O. et al. (2013). Monitoring of the rate of thermal denudation and thermal abrasion on the western coast of Kolguev Island, using high resolution satellite images. Earth’s Cryosphere. Vol. 17. No. 4. P. 36–47. (in Russ.)
  8. Leibman M., Kizyakov А., Zhdanova Yu. et al. (2021). Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001–2010. Remote Sensing. Vol. 13. No. 20. 13. 4042. https://doi.org/10.3390/rs13204042
  9. Leibman M.O., Kizyakov A.I., Zhdanova E.Yu. et al. (2021). Retreat of the coast of the Yugorsky Peninsula as a result of thermal denudation for 2010–2020 and 2001–2010. Sovremennye issledovaniya transformatsii kriosfery i voprosy geotekhnicheskoi bezopasnosti sooruzhenii v Arktike. Salekhard: Pravitel’stvo Yamalo-Nenetskogo avtonomnogo okruga (Publ.). P. 246–249. https://doi.org/10.7868/9785604610848066. (in Russ.)
  10. Maslakov A.A. (2019). Modern dynamics of abrasion-thermal denudation coasts of the Bering and Chukchi Seas. Geodinamicheskie protsessy i prirodnye katastrofy. Tezisy dokladov III Vserossiiskoii nauchnoi konferentsii s mezhdunarodnym uchastiem. Yuzhno-Sakhalinsk: Institut morskoy geologii i geofiziki DVO RAN (Publ.). P. 146. (in Russ.)
  11. Nesterova N.B., Khomutov A.V., Leibman M.O. et al. (2021). The inventory of retrogressive thaw slumps (thermocirques) in the north of Western Siberia based on 2016–2018 satellite imagery mosaic. Cryosphere of the Earth. Vol. XXV. No. 6. P. 41–50. https://doi.org/10.15372/KZ20210604
  12. Novikova A.V. (2022). Morfologiya i dinamika termoabrazionnykh beregov Karskogo morya (Morphology and dynamics of thermal abrasion coasts of the Kara Sea). PhD thesis. Moscow: MSU (Publ.). 26 p. (in Russ.)
  13. Novikova A.V., Ogorodov S.A. (2021). Morphodynamics of the coasts of the Kara Sea. Zakonomernosti formirovaniya i vozdeistviya morskikh, atmosfernykh opasnykh yavlenii i katastrof na pribrezhnuyu zonu RF v usloviyakh global’nykh klimaticheskikh i industrial’nykh vyzovov (“Opasnyye yavleniya – III”): materialy III Mezhdunarodnoi nauchnoi konferentsii. Rostov-na-Donu: YUNTS RAN (Publ.). P. 284–286. (in Russ.)
  14. Ogorodov S.A. (2011). Rol’ morskikh l’dov v dinamike rel’efa beregovoi zony (The role of sea ice in the dynamics of the coastal zone relief). M.: MSU (Publ.). 173 p.
  15. Ogorodov S.A., Arkhipov V.V., Baranskaya A.V. et al. (2014). Technogenic factor in the dynamics of the shores of the Pechora and Kara Seas in the context of climate change and ice cover. Materialy XXV Mezhdunarodnoi beregovoi konferentsii “Beregovaya zona – vzgl’yad v budushchee”. M.: GEOS (Publ.). P. 114–117. (in Russ.)
  16. Ogorodov S.A., Baranskaya A.V., Belova N.G. et al. [Electronic data]. Access way: https://rus.arcticcoast.ru/atlas/ (access date: 12.20.2022). (in Russ.)
  17. Pizhankova E.I., Baldina E.A., Gavrilov A.V. et al. (2022). Exogenous geodynamics of small islands in the Arctic seas (based on the results of space imagery interpretation). Sbornik dokladov Shestoi konferentsii geokriologov Rossii “Monitoring v kriolitozone” s uchastiem rossiiskikh i zarubezhnykh uchenykh, inzhenerov i spetsialistov. MGU imeni M.V. Lomonosova, 14–17 iyunya 2022 g. Moscow: KDU, Dobrosvet (Publ.). P. 484–491. (in Russ.). https://doi.org/10.31453/kdu.ru.978-5-7913-1231-0-2022-1130
  18. Pizhankova E.I. (2011). Thermщdenudation in the coastal zone of the Lyakhovsky Islands (interpretation of aerospace images). Earth’s Cryosphere. Vol. XV. No. 3. P. 61–70. (in Russ.)
  19. Pizhankova E.I., Dobrynina M.S. (2010). The dynamics of the Lyakhovsky Islands coastline (results of aerospace image interpretation). Earth’s Cryosphere. Vol. XIV. No. 4. P. 66–79. (in Russ.)
  20. Puzachenko Yu.G. Matematicheskie metody v ekologicheskikh i geograficheskikh issledovaniyakh (Mathematical methods in ecological and geographical research). M.: Izdatel’skii tsentr “Akademiya” (Publ.). 2004. 416 p. (in Russ.)
  21. Romanenko F.A., Baldina E.A., Lugovoy N.N. et al. (2021). Shoreline Dynamics of the islands of the northern part of the Kara Sea (paper 1. Ushakov Island). Geomorfologiya. Vol. 52. No. 3. P. 116–124. (in Russ.). https://doi.org/10.31857/S043542812103010X
  22. Thermal abrasion of seashores Russian Arctic [Electronic data]. Access way: https://istina.msu.ru/projects/119511499/ (access date: 01.09.2022). (in Russ.)
  23. Vasiliev A.A., Pokrovsky S.I., Shur Yu.L. (2001). Dynamics of the coastal thermoerosion of Western Yamal. Earth’s Cryosphere. Vol. V. No. 1. P. 44–52. (in Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (605KB)
3.

Download (2MB)
4.

Download (2MB)
5.

Download (1MB)

Copyright (c) 2023 А.С. Викторов, Т.В. Орлов, М.В. Архипова, В.Н. Капралова, В.В. Бондарь

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies