RECONSTRUCTION OF SEDIMENT RUNOFF FORMATION FEATURES IN THE LAKE KHORLAKEL (NORTH CAUCASUS) CATCHMENT FOR THE LAST 8 THOUSAND YEARS (ACCORDING TO GEOMORPHOLOGICAL AND LITHOSTRATIGRAPHIC DATA)2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The change in sediment yield is an important indicator of the natural environment dynamics, depending on the combination of landscape, tectonic and climatic conditions. Assessment of sediment yield often based on the results of studying the bottom sediments of mountain lakes with relatively compact catchments. However, for correct reconstructions, in addition to analyzing lake sediments, it is necessary to study the causes and mechanizm of sediment redistribution in their catchments, to identify sediment delivery pathways to the reservoir and their possible changes over different time windows. The drainless Lake Khorlakel, located at the altitude of 2045.0 m above sea level on the northern macroslope of the Greater Caucasus. It is a suitable testing ground for complex research: on the one hand, the relict reservoir is an ideal sedimentation trap, and on the other, it is located with in an area of intensive exogenous processes and tectonic activity. The two boreholes were drilled in 2017 in the deepest (≈8 m) part of the lake and 17 samples collected taken from the cores for radiocarbon dating, which made it possible to build an age model for the range from 8000 to 500 yr. BP. Complex geological and geomorphological studies were carried out in 2021 to interpret the obtained data. It was found that sedimentation in the lake is associated with runoff and sediment redistribution in the Elbashi creek catchment. A number of episodes of proluvial activation with the formation of an outflow cone, followed by lake accumulation, have been traced for the last 8 kyr. The connection between lake and catchment ceased only in the last 1 kyr. BP. Two main stages of lake sedimentation with a boundary of 3 kyr. BP and 10 episodes, that are characterized by different proportions of mineral and organic components in bottom sediments were established. Some of the lithostratigraphic boundaries correlate with strong earthquakes that occurred in the Elbrus region, and some – with climatic events.

About the authors

S. V. Shvarev

Institute of Geography RAS; Schmidt institute of physics of the Earth RAS

Author for correspondence.
Email: shvarev@igras.ru
Russia, Moscow; Russia, Moscow

M. Yu. Alexandrin

Institute of Geography RAS

Email: shvarev@igras.ru
Russia, Moscow

M. M. Ivanov

Institute of Geography RAS; Lomonosov Moscow State University, Faculty of Geography

Email: shvarev@igras.ru
Russia, Moscow; Russia, Moscow

V. N. Golosov

Institute of Geography RAS; Lomonosov Moscow State University, Faculty of Geography

Email: shvarev@igras.ru
Russia, Moscow; Russia, Moscow

References

  1. Aalto R., Dunne T., Guyot J. (2006). Geomorphic Controls on Andean Denudation Rates. The Journal of Geology. Vol. 114. P. 85–99. https://doi.org/10.1086/498101
  2. Bachmanov D.M., Kozhurin A.I., Trifonov V.G. (2017). Database of active faults of Eurasia. Geodinamika i tektonofizika. Iss. 8. No 4. P. 711–736. (in Russ.) https://doi.org/10.5800/GT-2017-8-4-0314
  3. Blaauw M., Christen J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian analysis. Vol. 6. No. 3. P. 457–474. https://doi.org/10.1214/ba/1339616472
  4. Bogatikov O.A., Melekestsev I.V., Gurbanov A.G. et al. (2001). Catastrophic Pleistocene and Holocene Activity of the Elbrus Volcanic Center (North Caucasus, Russia): Events and Chronology Based on 14C, EPR, and K-Ar Dating. Vulkanologiya i Seismologiya. No. 2. P. 3–17.
  5. Breuer S., Kilian R., Baeza O. et al. (2013). Holocene denudation rates from the superhumid southernmost Chilean Patagonian Andes (53° S) deduced from lake sediment budgets. Geomorphology. No. 187. P. 135–152. https://doi.org/10.1016/j.geomorph.2013.01.009
  6. Cherbakova E.M. (1973). The ancient glaciation of the Greater Caucasus. M.: MGU (Publ.). 272 s. (in Russ.)
  7. Database of active faults of Eurasia. Scale: 1:1 000 000. (2018) [Electronic data]. Access way: http://neotec.ginras.ru/database.html (access date: 19.01.2022). Source: Database of Active Faults of Eurasia and adjacent Aquatories (AFEAD) (in Russ.)
  8. Einsele G., Hinderer M. (1998). Quantifying denudation and sediment-accumulation systems, (open and closed lakes): basic concepts and first results. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 140. Iss. 1–4. P. 7–21. https://doi.org/10.1016/s0031-0182(98)00041-8
  9. Forte A.M., Leonard J.S., Rossi M.W. et al. (2022). Low variability, snowmelt runoff inhibits coupling of climate, tectonics and topography in the Greater Caucasus. Earth and Planetary Science Letters. Vol. 584. 117525. https://doi.org/10.1016/j.epsl.2022.117525
  10. Golosov V., Tsyplenkov A. (2021). Factors controlling contemporary suspended sediment yield in the Caucasus region. Water. Vol. 13. No. 22. P. 3173. https://doi.org/10.3390/w13223173
  11. Grachev A.M., Golosov V.N. (2020). Evaluation of the Paleodenudation Rates in the Mountains: Main Approaches and Results. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. Iss. 84. No. 5. P. 704–714. (in Russ.) https://doi.org/10.31857/s2587556620050076
  12. Gurbanov A.G., Guzeev V.M., Gurbanova O.A. (2012). Possibilities of radiocarbon (14C) method for age determination of geological events in the Elbrus volcanic centre area. Bulletin of the Vladikavkaz Scientific Center. Vol. 21. No. 2. P. 60–68. (in Russ.). https://doi.org/10.46698/z3820-6136-6739-i
  13. Howarth J.D., Fitzsimons S.J., Norris R.J., Jacobsen G.E. (2012). Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine Fault, New Zealand. Geology. Vol. 40. Iss. 12. P. 1091–1094. https://doi.org/10.1130/g33486.1
  14. Knyazev A.V., Savineckij A.B., Gej N.A. (1992). The history of the vegetation cover of North Ossetia in the Holocene. Historical ecology of wild and domestic ungulates. History of pasture ecosystems. M.: Nauka (Publ.). P. 84–108. (in Russ.)
  15. Kvavadze E.V., Efremov Yu.V. (1996). Palynological studies of lake and lake-swamp sediments of the Holocene in the high mountains of Arkhiz (Western Caucasus). Acta Paleobotanica. Vol. 36. No. 1. P. 107–119.
  16. Marcott S.A., Shakun J.D., Clark P.U., Mix A.C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science. Vol. 339. P. 1198–1201. https://doi.org/10.1126/science.1228026
  17. Mazneva E.A., Konstantinov E.A., Ponomareva V.V. et al. (2021). Cryptotephra in lake-marsh sediments of the Greater Caucasus. Paths of evolutionary Geography. Issue 2: Materials of the II All-Russian Scientific Conference dedicated to the memory of prof. A.A. Velichko (Moscow, November 22–25, 2021). Moscow: IG RAS (Publ.). P. 808–812. (in Russ.)
  18. Milanovskij E.E. (1968). The recent tectonics of the Caucasus. M.: Nedra (Publ.). 484 p. (in Russ.)
  19. Milliman J.D., Syvitski J.P.M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountain rivers. The Journal of Geology. Vol. 100. P. 525–544. https://doi.org/10.1086/629606
  20. Nesje A.A. (1992). Piston corer for lacustrine and marine sediments. Arctic and alpine research. Vol. 24. No. 3. P. 257–259. https://doi.org/10.2307/1551667
  21. Nesmeyanov S.A. (2004). Ingenernaya geotektonika (Engineering geotectonics). M.: Nauka (Publ.). 780 p. (in Russ.)
  22. Onishchenko V.V., Dega N.S., Bostanova F.X. (2019). The current state of the mountain climate of the Karachay-Cherkess Republic. International Journal of Humanities and Natural Sciences. Iss. 1. No. 1. P. 29–35. (in Russ.)
  23. Pis’mennyj A.N., Pichuzhkov A.N., Zarubina M.A. et al. (2004). Ob"yasnitel’naya zapiska k Gosudarstvennoi geologicheskoi karte Rossiiskoi Federatsii masshtaba 1:200 000, izdanie vtoroe, seriya Kavkazskaya, listy K-38-I,VII (Kislovodsk) (Explanatory note to the State Geological Map of the Russian Federation scale 1:200000, second edition, Caucasian series, sheets K-38-I, VII (Kislovodsk)). SPb: VSEGEI (Publ.). 364 p. (in Russ.)
  24. Rascvetaev L.M. (1987). Tectonic conditions of the formation of the Alpine structure of the Greater Caucasus. Geology and minerals of the Greater Caucasus. M.: Nauka (Publ.). P. 69–96. (in Russ.)
  25. Reimer P., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve 0–55 cal kBP). Radiocarbon. Vol. 62. No. 4. P. 725–757. https://doi.org/10.1017/RDC.2020.41
  26. Rogozhin E.A., Ovsyuchenko A.N., Lutikov A.I. et al. (2014). Endogennye opasnosti Bol’shogo Kavkaza (Endogenous dangers of the Greater Caucasus). M.: IFZ RAS (Publ.). 256 p. (in Russ.)
  27. Rogozhin E.A., Yunga S.L., Marakhanov A.V. et al. (2002). Seismic and tectonic activity of faults on the south slope of the NW Caucasus. Russian journal of Earth sciences. Vol. 4. No. 3. P. 233–241. (in Russ.). https://doi.org/10.2205/2002es000095
  28. Rogozhin E.A., Ovsyuchenko A.N., Marakhanov A.V. (2008). Dislocations caused by ancient strong earthquakes in the Elbrus region. Doklady Earth Sciences. Vol. 422. No. 1. С. 1093–1096.
  29. Serebryanyj L.R., Golodkovskaya N.A., Orlov A.V. et al. (1984). Kolebaniya lednikov i protsessy morenonakopleniya na Tsentral’nom Kavkaze (Glacier fluctuations and moraine accumulation processes in the Central Caucasus. M.: Nauka (Publ.). 216 p. (in Russ.)
  30. Solomina O.N., Alexandrovskiy A.L., Zazovskaya E.P. et al. (2022). Late-Holocene advances of the Greater Azau glacier (Elbrus area, Northern Caucasus) revealed by 14C dating of paleosols. Holocene. Vol. 32. No. 5. P. 468–481. https://doi.org/10.1177/09596836221074029
  31. Solomina O.N., Kalugin I.A., Aleksandrin M.Y. et al. (2013). Drilling of lake Karakel sediments (Teberda River Valley) and prospects for reconstructing the history of glaciation and Holocene climate in the Caucasus. Ice and Snow. No. 2. P. 102–111. (in Russ.) https://doi.org/10.15356/2076-6734-2013-2-102-111
  32. Syvitski J.P.M., Milliman J. (2007). Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology. Vol. 115. P. 1–19.
  33. Vanmaercke M., Kettner A.J., Van Den Eeckhaut M. et al. (2014). Moderate seismic activity affects contemporary sediment yields. Progress in Physical Geography. Vol. 38. P. 145–172. https://doi.org/10.1177/0309133313516160
  34. Wells D.L., Coppersmith K.J. (1994). New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America. Vol. 84. No. 4. P. 974–1002.

Supplementary files


Copyright (c) 2023 С.В. Шварев, М.Ю. Александрин, М.М. Иванов, В.Н. Голосов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies