LOESS FORMATION IN NEW ZEALAND DURING THE LAST GLACIAL EPOCH AND UNDER MODERN CONDITIONS1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main territories for the development of Late Pleistocene loess are located in the inland regions of the Northern Hemisphere, so the very existence of loess in New Zealand, a region with a temperate maritime climate, is of undoubted scientific interest. The analysis of geological, geomorphological, paleogeographical and geochronological data on the distribution, structure and formation conditions of loess in New Zealand in the Late Pleistocene has been carried out. The study showed that in New Zealand, as in other regions of the temperate latitudes of the Southern Hemisphere, the accumulation of loess occurred mainly in the cold phases of the last climatic macrocycle: in the Early Pleniglacial, 80 (75)–(60) 55 ka BP; (2) during cooling within MIS 3, 45–40 ka BP on the South Island and 40–30 ka BP, with a peak of about 30 ka BP, on the North Island; (3) in the Late Pleniglacial, from 25 to 17–12 cal ka BP. Comparison of these stages with the Antarctica ice cores data shows their close relationship with global climate change. The article reviews data on the current conditions for the development of eolian processes and the formation of loess-like deposits in New Zealand. In contemporary conditions, eolian processes in New Zealand are concentrated within geomorphologically active territories, e. g. in river valleys with glacier feeding and an abundance of loose sediments, in areas with widespread coastal sand dunes, and in those territories where vegetation and soil disturbances promote wind erosion of the surface layers of unconsolidated sediments. Large-scale anthropogenic impact (destruction of forests, disruption of the herbaceous cover due to intensive grazing of livestock, especially sheep, ploughing of slopes on light weakly cohesive soils, etc.) to some extent makes the present interglacial conditions for the development of eolian processes in New Zealand similar to periglacial ones.

About the authors

O. K. Borisova

Institute of Geography RAS

Author for correspondence.
Email: olgakborisova@gmail.com
Russia, Moscow

References

  1. Alloway B.V., Lowe D.J., Barrell D.J.A. et al. (2007). Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). Journal of Quaternary Science. Vol. 22. P. 9–35. https://doi.org/10.1002/jqs.1079
  2. Alloway B.V., Stewart R.B., Neall V.E., Vucetich C.G. (1992). Climate of the last glaciation in New Zealand, based on aerosolic quartz influx in an andesitic terrain. Quaternary Research. Vol. 38. P. 170–179. http://doi.org/10.1016/0033-5894(92)90054-M
  3. Almond P.C. (1996). Loess, soil stratigraphy and Aokautere Ash on late Pleistocene surfaces in south Westland, New Zealand: interpretation and correlation with the glacial stratigraphy. Quaternary International. Vol. 34–36. P. 163–176. http://doi.org/10.1016/1040-6182(95)00081-X
  4. Almond P.C., Gulyás S., Sümegi P. et al. (2020). Palaeoenvironmental record of the Southern Hemisphere last glacial maximum from the Mount Cass loess section, North Canterbury, Aotearoa/New Zealand. Quaternary Research. Vol. 102. P. 115–129. https://doi.org/10.1017/qua.2020.95
  5. Almond P.C., Moar N.T., Lian O.B. (2001). Reinterpretation of the glacial chronology of South Westland, New Zealand. New Zealand Journal of Geology and Geophysics. Vol. 44. P. 1–15. https://doi.org/10.1080/00288306.2001.9514917
  6. Ballance P.F., Williams P.W. (1982). The geomorphology of Auckland and Northland. Landforms of New Zealand (Eds. Basher L.R., Painter D.J.). Auckland: Longman Paul, P. 127–146.
  7. Berger G.W., Pillans B.J., Tonkin P.J. (2001). Luminescence chronology of loess-paleosol sequences from Canterbury region, South Island, New Zealand. New Zealand Journal of Geology and Geophysics. Vol. 44. P. 501–516. http://doi.org/10.1080/00288306.2001.9514952
  8. Berger G.W., Tonkin P.J., Pillans B.J. (1996). Thermoluminescence dating of loess, Rakaia River, South Island, New Zealand. Quaternary International. Vol. 34–36. P. 177–181. http://doi.org/10.1016/1040-6182(95)00082-8
  9. Borisova O.K. (2008). Landshaftno-klimaticheskie izmeneniya v umerennykh shirotakh Severnogo i Yuzhnogo polusharii za poslednie 130 000 let (Landscape and climatic changes in the temperate latitudes of the Northern and Southern Hemispheres over the past 130,000 years). Moscow: GEOS (Publ.), 264 p. (in Russ.)
  10. Borisova O.K. (2007). Late Pleistocene glacial epoch in the temperate latitudes of the Southern Hemisphere: landscape and climatic features and chronology of the main events. Izvestiya RAN. Seriya geograficheskaya. No. 3. P. 96–106. (in Russ.)
  11. Chinn T.J.H. (1979). How wet is the wettest of the wet West Coast? New Zealand Alpine Journal. Vol. 32. P. 85–87.
  12. Cowie J.D. (1963). Dune-building phases in the Manawatu District, New Zealand. New Zealand Journal of Geology and Geophysics. Vol. 6. P. 268–280. http://doi.org/10.1080/00288306.1963.10420083
  13. Cowie J.D. (1964). Loess in the Manawatu District, New Zealand. New Zealand Journal of Geology and Geophysics. Vol. 7. P. 389–396. http://doi.org/10.1080/00288306.1964.10420185
  14. Denton G.H., Heusser C.J., Lowell T.V. et al. (1999). Interhemispheric linkages of paleoclimate during the last glaciation. Geografiska Annaler. Vol. 81A. Iss. 2. P. 107–153.
  15. Eden D., Froggatt P.C. (1988). Identification and stratigraphic significance of distal Aokautere Ash in three loess cores from eastern South Island, New Zealand. Loess: its Distribution, Geology and Soils (Eds. Eden D.N., Furkert R.J.). Rotterdam: Balkema, P. 47–58.
  16. Eden D., Froggatt P.C., McIntoch P. (1992). The distribution and composition of volcanic glass in late Quaternary loess deposits of southern South Island, New Zealand. New Zealand Journal of Geology and Geophysics. Vol. 35. P. 69–79. http://doi.org/10.1080/00288306.1992.9514501
  17. Eden D.N., Hammond A.P. (2003). Dust accumulation in the New Zealand region since the last glacial maximum. Quaternary Science Reviews. Vol. 22 (18–19). P. 2037–2052. https://doi.org/10.1016/S0277-3791(03)00168-9
  18. Eger A., Almond P.C., Condron L.M. (2010). Quantifying the soil- and ecosystem-rejuvenating effects of loess in a high leaching environment, West Coast, New Zealand. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6 August 2010, Brisbane, Australia. P. 33–36. Published on DVD. https://www.researchgate.net/publication/267991879
  19. Fagg R., Smalley I. (2019). Loess in New Zealand: Observations by Haast, Hutton, Hardcastle, Wild and Speight, 1878–1948. Quaternary International. Vol. 502 (A). P. 173–178. https://doi.org/10.1016/j.quaint.2019.01.029
  20. Fleming C.A. (1972). The contribution of 14C dates to the Quaternary geology of the ‘Golden Coast’ western Wellington. Tuatara. Vol. 19. P. 61–69.
  21. Formento-Trigilio M.L., Burbank D., Nicol A. et al. (2003). River response to an active fold-and-thrust belt in a convergent margin setting, North Island, New Zealand. Geomorphology. Vol. 49. P. 125–152. http://doi.org/10.1016/S0169-555X(02)00167-8
  22. Frenzel B., Pesci M., Velichko A.A. (Eds.). (1992). Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere: Late Pleistocene – Holocene. Budapest; Stuttgart; New York: G. Fischer, 146 p.
  23. Froggatt P.C., Lowe D.J. (1990). A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age. New Zealand Journal of Geology and Geophysics. Vol. 33. No. 1. P. 89–109. http://doi.org/10.1080/00288306.1990.10427576
  24. Hesse P.P. (1994). The record of continental dust from Australia in Tasman Sea sediments. Quaternary Science Reviews. Vol. 13. P. 257–272. http://doi.org/10.1016/0277-3791(94)90029-9
  25. Heusser L.E., van de Geer G. (1994). Direct correlation of terrestrial and marine paleoclimatic records from four glacial-interglacial cycles – DSDP site 594 SW Pacific. Quaternary Science Reviews. Vol. 13: 273–282. http://doi.org/10.1016/0277-3791(94)90030-2
  26. Imbrie J., Hays J.D., Martinson D.G. et al. (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Milankovitch and Climate. Part 1. NATO ASI Series C (Eds. Berger A., Imbrie J., Hays J. et al.). Vol. 126. Dordrecht: D. Reidel, P. 269–305.
  27. Isachenko A.G., Shlyapnikov A.A. (1989). Priroda mira. Landshafty (The nature of the world. Landscapes.). M.: Mysl’ (Publ.), 504 p.
  28. Koffman B.G., Goldstein S.L., Winckler G. et al. (2021). New Zealand as a source of mineral dust to the atmosphere and ocean. Quaternary Science Reviews. Vol. 251. 106659. http://dx.doi.org/10.1016/j.quascirev.2020.106659
  29. Kotlyakov V.M., Lorius K. (2000). Four climatic cycles according to ice core data from a deep well at Vostok station in Antarctica. Izvestiya RAN. Seriya geograficheskaya. No. 1. P. 7–19. (in Russ.)
  30. Marra M.J., Smith E.G.C., Shulmeister J., Leschen R. (2004). Late Quaternary climate change in the Awatere Valley, South Island, New Zealand using a sine model with a maximum likelihood envelope on fossil beetle data. Quaternary Science Reviews. Vol. 23. P. 1637–1650. http://doi.org/10.1016/j.quascirev.2004.01.007
  31. Marshall P. (1903). Dust storms in New Zealand. Nature. Vol. 68. P. 223. http://doi.org/10.1038/068223a0
  32. McCraw J.D. (1975). Quaternary airfall deposits in New Zealand. Royal Society of New Zealand Bulletin. Vol. 13. P. 35–44.
  33. McGlone M.S. (2001). A late Quaternary pollen record from marine core P69, southeastern North Island, New Zealand. New Zealand Journal of Geology and Geophysics. Vol. 44. P. 69–77. http://doi.org/10.1080/00288306.2001.9514923
  34. McGlone M.S. (1988). New Zealand. Vegetation History (Eds. Huntley B., Webb III T.). Dordrecht, Boston, London, Kluwer Acad. Publ., P. 557–599.
  35. McGlone M.S., Salinger M.J., Moar N.T. (1993). Paleovegetation studies of New Zealand since the Last Glacial Maximum. Global climates since the last glacial maximum (Eds. Wright H.E., Kutzbach J.E., Ruddiman W.F., Street-Perrott F.A., and Bartlein P.J.). Minneapolis: Univ. of Minnesota Press, P. 294–317.
  36. McGowan H.A. (1996). The weather of windblown sediment: Aeolian processes within the New Zealand landscape. Weather and Climate. Vol. 16. No. 1. P. 3–16. http://doi.org/10.2307/44279890
  37. Milne J.D.G., Smalley I.J. (1979). Loess deposits in the southern part of the North Island of New Zealand: an outline stratigraphy. Acta Geologica Academiae Scientiarum Hungaricae. Vol. 22. P. 197–204.
  38. Nelson C.S., Hendy I.L., Neil H.L. et al. (2000). Last glacial jetting of cold waters through the Subtropical Convergence zone in the Southwest Pacific off eastern New Zealand, and some geological implications. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 156. P. 103–121. http://doi.org/10.1016/S0031-0182(99)00134-0
  39. Newnham R.M., Lowe D.J., Williams P.W. (1999). Quaternary environmental change in New Zealand: a review. Progress in Physical Geography: Earth and Environment. Vol. 23. P. 567–610. http://doi.org/10.1177/030913339902300406
  40. Norton D.A., McGIone M.S., Wigley T.M.L. (1986). Quantitative analyses of modern pollen/climate relationships in New Zealand indigenous forests. New Zealand Journal of Botany. Vol. 24. P. 331–342. http://doi.org/10.1080/0028825X.1986.10412681
  41. Ono Y., Shulmeister J., Lehmkuhl F. et al. (2004). Timings and causes of glacial advances across the PEP-II transect (East-Asia to Antarctica) during the last glaciation cycle. Quaternary International. Vol. 118–119. P. 55–68. http://doi.org/10.1016/S1040-6182(03)00130-7
  42. Palmer A.S., Pillans B.J. (1996). Record of climatic fluctuations from ca. 500 ka: loess deposits and paleosols near Wanganui, New Zealand. Quaternary International. Vol. 34–36. P. 155–162. http://doi.org/10.1016/1040-6182(95)00080-1
  43. Palmer A.S., Vucetich C.G., McGlone M.S., Harper M.A. (1989). Last Glacial loess and Last Glacial vegetation of Wairarapa Valley. New Zealand Journal of Geology and Geophysics. Vol. 32. P. 499–513. http://doi.org/10.1080/00288306.1989.10427557
  44. Pillans B., McGlone M., Palmer A. et al. (1993). The Last Glacial Maximum in central and southern North Island, New Zealand: a paleoenvironmental reconstruction using the Kawakawa Tephra Formation as a chronostratigraphic marker. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 101. P. 283–304. http://doi.org/10.1016/0031-0182(93)90020-J
  45. Raeside J.D. (1964). Loess deposits of the South Island, New Zealand, and soils formed on them. New Zealand Journal of Geology and Geophysics. Vol. 7. No. 4. P. 811–838. http://doi.org/10.1080/00288306.1964.10428132
  46. Rukhin L.B. (1969). Osnovy litologii. Uchenie ob osadochnykh porodakh (Fundamentals of lithology. The doctrine of sedimentary rocks). Leningrad: Nedra (Publ.), 703 p. (in Russ.)
  47. Salter R.T. (1984). Wind erosion. Natural Hazards in New Zealand (Compilers I. Speden, M.J. Crozier). Wellington, New Zealand National Commission for Unesco, P. 206–248.
  48. Shepherd M.J. (1985). The origin of the Koputaroa dunes, Horowhenua, New Zealand. New Zealand Journal of Geology and Geophysics. Vol. 28. P. 323–327. http://doi.org/10.1080/00288306.1985.10422230
  49. Shulmeister J. (Ed.). (2016). Landscape and Quaternary environmental change in New Zealand. Springer: Atlantis Press, 334 p.
  50. Shulmeister J., Goodwin I., Renwick J. et al. (2004). The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis. Quaternary International. Vol. 118–119. P. 23–53. http://doi.org/10.1016/S1040-6182(03)00129-0
  51. Shulmeister J., Soons J.M., Berger G.W. et al. (1999). Environmental and sea level history of Banks Peninsula (Canterbury, New Zealand) through three glaciation-interglaciation cycles. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 152. P. 101–127. http://doi.org/10.1016/S0031-0182(99)00035-8
  52. Smalley I. (1995). Making the material: the formation of silt-sized primary mineral particles for loess deposits. Quaternary Science Reviews. Vol. 14. P. 645–651. http://doi.org/10.1016/0277-3791(95)00046-1
  53. Velichko A.A. (Ed.). (2002). Dinamika landshaftnykh komponentov i vnutrennikh morskikh basseinov Severnoi Evrazii za poslednie 130000 let (Dynamics of Landscape Components and Inland Marine Basins of Northern Eurasia over the Last 130,000 Years). Moscow: GEOS (Publ.), 232 p. (in Russ.)
  54. Velichko A.A., Morozova T.D. (2009). Loess cover in the late Pleistocene. Paleoklimaty i paleolandshafty vnetropicheskogo prostranstva Severnogo polushariya. Pozdnii pleistotsen – golotsen. Moscow: GEOS (Publ.), 120 p. (in Russ.)
  55. Wang N., Lian O.B., Grapes R. (1998). Optical dating tests of loess, Southern North Island, New Zealand. Geological Society of New Zealand Miscellaneous Publication. Vol. 101A. 240 p.
  56. Wards I. (Ed.). (1976). New Zealand Atlas. Wellington: Government Printer, 292 р.
  57. Williams P.W. (1991). Tectonic geomorphology, uplift rates and geomorphic response in New Zealand. Catena. Vol. 18. P. 439–452. http://doi.org/10.1016/0341-8162(91)90048-3
  58. Wind erosion in New Zealand. (1997). Proceedings of the International Symposium on Wind Erosion, Manhattan, Kansas, 3–5 June 1997. Manhattan: USDA-ARS, http://www.weru.ksu.edu/symposium/proceed.htm.
  59. Wu Y., Roberts A.P., Grant K.M. et al. (2021). Climatically modulated dust inputs from New Zealand to the Southwest Pacific sector of the Southern Ocean over the last 410 kyr. Paleoceanography and Paleoclimatology. Vol. 36 (5). e2020PA003949. https://doi.org/10.1029/2020PA003949
  60. Yates K., Fenton C. (2018). Preliminary investigation of the soil-water characteristics of loess soils in Canterbury, New Zealand. Proceedings IAEG/AEG Annual Meeting, San Francisco, California. Vol. 6. Springer, 2019. https://doi.org/10.1007/978-3-319-93142-5_9
  61. Yates K., Fenton C.H., Bell D.H. (2018). A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand. Engineering Geology. Vol. 236. P. 11–21. https://doi.org/10.1016/j.enggeo.2017.08.001

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (598KB)
3.

Download (327KB)
4.

Download (1MB)
5.

Download (518KB)

Copyright (c) 2023 О.К. Борисова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies