DEVELOPMENT OF THE MINIATURE ANALOGUE OF THE SCABLANDS OF THE WEST USA IN THE LOWER POOL OF ONE OF THE KARELIAN HYDROELECTRIC POWER STATIONS1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Until the end of the Late Pleistocene, the modern river valleys of most of Scandinavia remained buried under the cover of continental ice. The rivers of the region, including the Karelian ones, are distinguished by their geological youth, having formed as fluvial complexes only in the Holocene. The young age, combined with the strength of the crystalline rocks of the Baltic Shield, has affected the fact that the rivers here are characterized by the lack of development of the longitudinal profile. At the base of the thresholds, at which the flow acquires the character of rapid, the processes of formation of miniature scaffolds develop in places. A similar hydraulic situation developed at the front of the degrading glacier. The lower reaches of dams of hydraulic stations are also favorable for a powerful impact on the rock bed. Numerous traces of violent deep erosion, accompanied by the phenomena of indiscriminate erosion and hydrodynamic cavitation, can be found on the kilometer-long sections of the exposed rock bed of semi-mountain streams drained during hydraulic development.

A miniature scaffold developed by powerful natural and technogenically provoked floods in the lower part of the large rapid Matkozhnia on the Nizhny Vyg River, in the zone of the White Sea-Baltic Canal, is indicative. Almost the entire route of the canal, starting from Vygozero, is laid along the valley of the Lower Vyg. Only in some sections between the locks, the channel bed was dug away from the river. There, the old valley is preserved either almost dehydrated or with a small amount of water in the rock bed. The bedrock is exposed along the entire riverbed. Small boulders and pebbles of different sizes and grades of rolling can be found only in scattered pockets along the river channel. There numerous glass–like forms of microrelief – with a diameter and a depth of up to the first meters – “glasses” and “wells” are formed on Precambrian crystalline rocks. The contribution of evorsia to the denudation of crystalline slates in the bottom of the Vyga Valley on the rapid Matkozhnia is very significant, although the evorsion-cavitation effect itself is carried out rarely and for a limited time. Similar processes of natural origin operated before the creation of reservoirs on rapid-waterfall sites in the Vyga Valley and other large rivers of Karelia; they were caused by natural factors. Emergency descents of water through high spillway dams could increase the destructive effect of the stream on its root bed. So, in particular, the formation of evorsion microforms in the bed of the Lower Vyg at the rapid Matkozhnia is partially technogenically caused. Karelian cavitation-evorsion complexes of forms associated with hydrospheric catastrophes can be considered as miniature analogues of giant Late Pleistocene scablands of the northwestern USA.

About the authors

A. A. Lukashov

Lomonosov Moscow State University, Faculty of Geography

Author for correspondence.
Email: smoluk@yandex.ru
Russia, Moscow

T. L. Smoktunovich

Moscow State Pedagogical University, Faculty of Geography

Email: smoluk@yandex.ru
Russia, Moscow

References

  1. Berkovich K.M. (2004). Anthropogenic changes of riverbed processes. Geografiya, obshchestvo, okruzhayushchaya sreda. Tom VI. Dinamika i vzaimodeistvie atmosfery i gidrosfery. Moscow: Gorodets (Publ.), P. 486–493. (in Russ.)
  2. Bourke M.C. (2006). Scabland. Encyclopedia of Geomorpho-logy (Ed. Goude A.S.). Routledge. P. 912–914.
  3. Bretz J.H. 1923. The channeled scablands of the Columbia Plateau. Journal of Geology. Vol. 31. No. 8. P. 617–649.
  4. Chalov R.S. (2019). Ruslovedenie: teoriya, geografiya, praktika. T. 3: Antropogennye vozdeistviya, opasnye proyavleniya i upravlenie ruslovymi protsessami (Channel studies: theory, geography, practice. Iss. 3: Anthropogenic impacts, hazardous manifestations and channel management). Moscow: Krasand (Publ.), 640 p. (in Russ.)
  5. Chebotarev A.I. (1978). Gidrologicheskii slovar' (Hydrological dictionary). Leningrad: Hydrometeoizdat (Publ.), 308 p. (in Russ.)
  6. Evzerov V.Ya. (2020). The main events of the evolution of the Late Valdai glaciation in the Karelo-Kola region with an addition to the previously published data on the capacities of building materials. Vestnik Kol’skogo nauchnogo tsentra RAN. No. 1. P. 26–33. https://doi.org/10.37614/2307-5228.2020.12.1.003
  7. Glebovitskii V.A. (Ed.). (2005). Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield). St. Petersburg: Nauka (Publ.), 711 p. (in Russ.)
  8. Holtedal U. (1958). Geologiya Norvegii. Tom II (Geology of Norway. Issue II). Moscow: Izdatel’stvo inostrannoi literatury (Publ.), 395 p. (in Russ.)
  9. Jackson J.A. (Ed.). (2002). Tolkovyi slovar' angliiskikh geologicheskikh terminov. V dvukh tomakh. Tom 2 (Explanatory Dictionary of English geological terms. In two issues. Issue 2). Moscow: MTSGK “Geokart”, GEOS (Publ.), 637 p. (in Russ.)
  10. Karasev I.F. (1970). Ruslovye protsessy pri perebroske stoka (Channel processes during runoff diversion). Leningrad: Hydrometeoizdat (Publ.), 268 p. (in Russ.)
  11. Knall R., Daly J., Hammit F. (1974). Kavitatsiya (Cavitation). M.: Mir (Publ.), 678 p.
  12. Kvasov D.D. (1976). Origin of the basin of Lake Onega. Paleolimnologiya Onezhskogo ozera. Leningrad: Nauka (Publ.), P. 7–40. (in Russ.)
  13. Lobanova N.V. (2015). Petroglyphs in the lower reaches of the Vyg River: problems of chronology and periodization. Rossiiskaya arkheologiya. No. 4. P. 16–33. (in Russ.)
  14. Lukashov A.D. (1976). Noveishaya istoriya Karelii (The modern history of Karelia). Leningrad: Nauka (Publ.), 109 p. (in Russ.)
  15. Magee K. (1996). From the Scabland to Mars: Preparing for the Pathfinder Mission. The Planetary report. Vol. XVI. No. 2. P. 10–14.
  16. Mathez E.A., Webster J.D. (2004). The Earth Machine. The Science of a Dynamic Planet. New York: Columbia University Press (Publ.), 335 p.
  17. O’Connor J.E., Baker R.H. (1992). Magnitudes and implications of peak discherges from glacial Lake Misssoula. Geological Society of America Bulletin. Vol. 104. P. 267–279.
  18. Rice R.J. (1980). Osnovy geomorfologii (Fundamentals of geomorphology). Moscow: Progress (Publ.), 576 p. (in Russ.)
  19. Rudberg S. (1960). Geology and Morphology. A geography of Norden (Ed. A. Somme). Bergen-Oslo, P. 27–40.
  20. Rudoy A.N. (2005). Gigantskaya ryab’ techeniya (istoriya issledovanii, diagnostika, paleogeograficheskoe znachenie) (Giant ripples of the current (history of research, diagnostics, paleogeographic significance)). Tomsk: TSPU (Publ.), 224 p. (in Russ.)
  21. Rudoy A.N. (1994). Skeyblend of Central Asia. Priroda. No. 8. P. 3–20. (in Russ.)
  22. Rybalko A.E., Tokarev M.Yu., Semenova P.R. et al. (2018). The history of the formation of the White Sea basin and the quaternary cover of the White Sea according to geological mapping. Materialy Vserossiiskoi nauchnoi konferentsii “Pozdne- i postglyatsial’naya istoriya Belogo morya: geologiya, tektonika, sedimentatsionnye obstanovki, khronologiya”: sbornik statei. Moscow: KDU, Universitetskaya Kniga (Publ.), P. 141–146. (in Russ.)
  23. Samoilov A.E. (2003). Channel. Captain-club. No. 1. P. 116–119. (in Russ.)
  24. Sever Evropeiskoi chasti SSSR. (1966). The North of the European part of the USSR. Moscow: Nauka (Publ.), 452 p. (in Russ.)
  25. Shchukin I.S. (1980). Chetyrokh"yazychnyi entsiklopedicheskii slovar' terminov po fizicheskoi geografii (Quadrilingual encyclopedic dictionary of terms on physical geography). Moscow: Sovetskaya encyclopediya (Publ.), 703 p. (in Russ.)
  26. Spiridonov A.I. (1978). Geomorfologiya evropeiskoi chasti SSSR (Geomorphology of the European part of the USSR). Moscow: Vischaya shchkola (Publ.), 332 p. (in Russ.)
  27. Subetto D.A., Potakhin M.S., Zobkov M.B. et al. (2019). The development of Lake Onega in the Late Glacial period according to the results of GIS modeling. Geomorfologiya. No. 3. P. 83–90. (in Russ.) https://doi.org/10.31857/S0435-42812019383-90
  28. Terve.su. Finland [Electronic data]. Access way: https://terve.su/ispolinskie-kotly-v-finlyandii (access date: 01.08.2022)
  29. The White Sea-Baltic Chanal named after Stalin. (1950). Bol’shaya Sovetskaya entsyclopedia. 2 izdanie. Tom. 4. Moscow: Sovetskaya entsyclopediya (Publ.), P. 461. (in Russ.)
  30. Velichko A.A., Faustova M.A., Pisareva V.V., Karpukhina N.V. (2015). Reconstruction of landscapes formed on the outskirts of the Scandinavian ice sheet during its degradation (in the interval from the maximum cooling to the beginning of the Holocene). Aktual’nye problemy paleogeografii i stratigrafii pleistotsena: Materialy Vserossiiskoi nauchnoi konferentsii “Markovskie chteniya 2015 goda”. Moscow: Geograficheskii facul’tet MGU (Publ.), P. 49–51. (in Russ.)
  31. Vinogradova N.N., Chalov R.S. (2004). Mountain rivers and rivers in the mountains: longitudinal profile, morphology and dynamics of riverbeds. Geografiya, obshchestvo, okruzhayushchaya sreda. Tom VI. Dinamika i vzaimodeistvie atmosfery i gidrosfery. Moscow: Gorodets (Publ.), P. 460–469. (in Russ.)
  32. Voskresensky S.S. (1968). Geomorfologiya SSSR (Geomorphology of the USSR). Moscow: Vischaya shchkola (Publ.), 368 p. (in Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (966KB)
4.

Download (2MB)
5.

Download (1MB)
6.

Download (1MB)

Copyright (c) 2023 А.А. Лукашов, Т.Л. Смоктунович

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies