Усталостное поведение изгибаемых железобетонных балок при коррозии

Обложка

Цитировать

Полный текст

Аннотация

Статья посвящена вопросам усталости изгибаемых железобетонных балок при коррозии арматуры. Рассматриваются влияние выступов и выемки арматуры периодического профиля в бетоне при повторяющихся нагрузках, которые действуют как концентраторы напряжений, что приводит к появлению усталостных трещин и к снижению усталостной прочности. Высота, ширина, угол подъема и радиус основания выступа влияют на величину концентрации напряжения и, следовательно, на усталостную прочность арматурных стержней. Представлена кривая циклических напряжений-деформаций (гистерезиса) для арматуры. После 7% -ной фактической потери массы наблюдается снижение усталостных характеристик балки. Поскольку это уменьшение совпадает с наблюдением питтинга, предполагается, что оно в основном из-за точечной коррозии. Предлагается деформационный подход к выносливости. Выведена зависимость между деформацией и сроком службы элемента. Показано, что коэффициент усталостной прочности стальной арматуры в балках увеличивается с увеличением глубины выемки, а контролирующим коэффициентом усталостной прочности балок является усталостная прочность стального стержня.

Об авторах

А. Г. Тамразян

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: tamrazian@mail.ru
ORCID iD: 0000-0003-0569-4788
SPIN-код: 2636-2447

Список литературы

  1. Hollaway L.C., Leeming M.B. Strengthening of Reinforced Concrete Structures: Using Externally-Bonded FRP Composites in Structural and Civil Engineering. Wood head, Cambridge, England, 1999.
  2. ACI Committee 215, 1974, Considerations for design of Concrete Structures Subjected to Fatigue loading (ACI 215R-74 revised 1992 reapproved 1997), American Concrete Institute, Farmington Hills, MI, 1997. 24 p.
  3. Bannantine J., Comer J., Handrock J. Fundamentals of Metal Fatigue Analysis. Prentice Hall, NJ, 1990.
  4. Мирсаяпов И.Т., Тамразян А.Г. К разработке научных основ теории выносливости железобетонных конструкций // Промышленное и гражданское строительство. 2017. № 1. С. 50–56.
  5. Мирсаяпов И.Т., Тамразян А.Г. К расчету железобетонных конструкций на выносливость // Промышленное и гражданское строительство. 2016. № 11. С. 19–23.
  6. Comite Euro- International Du Beton, (CEB) “Fatigue of Concrete Structures: State of the Art Report”, Bulletin № 188, Lausanne, Switzerland, 1988.
  7. Barnes R.A., Mays G.C. Fatigue Performance of Concrete Beams Strengthened with CFRP Plates // ASCE Journal of Composites for Constraction. 1999. Vol. 3. No. 2. Pp. 63–72.
  8. Lushnikova V.Y., Tamrazyan A.G. The effect of reinforcement corrosion on the adhesion between reinforcement and concrete // Magazine of Civil Engineering. 2018. No. 4 (80). Pp. 128–137.
  9. Тамразян А.Г., Мацеевич Т.А. Анализ надежности железобетонной плиты с корродированной арматурой // Строительство и реконструкция. 2022. № 1 (99). С. 89–98.
  10. Tilly G.P. Fatigue of Steel Reinforcement Bars in Concrete : a Review // Fatigue of Engineering Materials and Structures. 1979. Vol. 2. No. 3. Pp. 251–268.
  11. ACI Committee 222. Protection of Metals in Concrete Against Corrosion (ACI 222-01), American Concrete Institute, Farmington Hills, MI, 2001. 30 p.
  12. Bentur A., Diamond S., Berke N.S. Steel Corrosion in Concrete: Fundamentals and Civil Engineering Practice. E & FN Spone, London, 1997.
  13. Тамразян А.Г., Попов Д.С. Напряженно-деформированное состояние коррозионно-поврежденных железобетонных элементов при динамическом нагружении // Промышленное и гражданское строительство. 2019. № 2. С. 19–26.
  14. Тамразян А.Г., Минеев М.С. К возникновению трещин в модели толстостенного бетонного цилиндра при коррозии с учетом пористой зоны на границе раздела арматуры и бетона // Известия высших учебных заведений. Технология текстильной промышленности. 2021. № 3 (393). С. 159–165.
  15. Jhamb A.C., MacGregor J.G. Effect of surface Characteristics on Fatigue Strength of Reinforced Steel // Abeles Symposium: Fatigue of Concrete. ACI Sp-41, Detroit, MI, 1972. Pp. 139–182.
  16. Arthur P.D., Earl J., Hodgkiess T. Corrosion Fatigue in Concrete for Marine Applications. Fatigue of Concrete Structures. Shah S.P., ED ACI SP-75, Detroit, MI, 1982. Pp. 1–24.
  17. Roper H., Hetherington G.B. Fatigue of Reinforced Concrete Beams in Air, Cloride Solution, and Sea Water. Fatigue of Concrete Structures, Shah S.P., ED ACI SP-75, Detroit, MI, 1982. Pp. 307–330.
  18. Fib model code for concrete structures // FIB Model Code, Lausanne, Switzerland : International Federation for Structural Concrete, 2010.
  19. Heffernan P.J., Erki M.A. Fatigue behavior of Reinforced Concrete Beams, Strengthened with Carbon Fibre Reinforced Plastic Laminates. // ASCE Journal of Composites for Construction. 2004. Vol. 8. No. 2. Pp.132–140.
  20. Masoud S., Soudki K., Topper T. Postrepair Fatigue Performance of FRP-Repaired Corroded Reinforced Concrete Beams: Experimental and Analytical Investigation // ASCE Journal of Composites for Construction. 2005. Vol. 9. No. 5. Pp. 441–449.
  21. Тамразян А.Г. Методология анализа и оценки надежности состояния и прогнозирование срока службы железобетонных конструкций // Железобетонные конструкции. 2023. Т. 1. № 1. С. 5–18.
  22. Neuber H. Theory of Stress Concentration for Shear Strained Prismatic Bodies with Arbitrary Non Linear Stress Strain Law // Journal of Applied Mechanics. 1961. Pp. 544–550.
  23. Masing G. Eigenspannungen und Verfestigung beim Messing. In Proc. of 2nd International. Congress of Applied Mechanics, Zurich, 1926.
  24. Smith K.N., Watson P., Topper T.H. A Stress – Strain Function for the Fatigue of Metals // Journal of Materials (JMLSA). 1970. Vol. 5. No. 4. Pp. 767–778.


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах