Two combinatorial identities related to enumeration of graphs

Cover Page

Cite item

Full Text

Abstract

From the explicit formula for the number of labeled, series-parallel, 2-connected graphs with a given number of vertices obtained by the author, two combinatorial identities are derived. Also, proofs of these identities independent of the enumeration of graphs are given.

Full Text

Определение 1 (см.[4 с. 118]) Цикломатическим числом связного графа называется увеличенная на единицу разность между числом ребер графа и числом его вершин.

Определение 2 k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@  —Циклический граф MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ это граф с цикломатическим числом, равным k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@

Определение 3 (см.[7]) Граф называется последовательно—параллельным, если он не содержит подразбиения полного графа K 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaI0aaabeaaaaa@37B1@ .

Последовательно—параллельные графы применяются при поcтроении надежных коммуникационных сетей (см. [9]).

В [3] получена явная формула для числа помеченных последовательно—параллельных 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связных графов с заданным числом вершин. В данной заметке из этой формулы выведены два комбинаторных тождества, a также приведено не зависящее от перечисления графов доказательство полученных тождеств.

Теорема 1. Верны следующие комбинаторные тождества:

i=1nj=n+1n+i1jj+1i1i1nin+ijjn+1=n,n3,  (1)

i=2 n j=n+2 n+i (1) j (j+1) i1 (i1)! n i n+i j j n+2 = n(n1)(n+3)(n+4) 12 ,n4. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaikdaaeaacaWGUbaaniabggHiLdGcdaaeWbqa bSqaaiaadQgacaaI9aGaamOBaiabgUcaRiaaikdaaeaacaWGUbGaey 4kaSIaamyAaaqdcqGHris5aOGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGQbaaaOWaaSaaaeaacaaIOaGaamOAaiabgUcaRi aaigdacaaIPaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGymaaaaaOqa aiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcacaaIHaaaamaabmaaba qbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaaGaayjkaiaawMcaamaa bmaabaqbaeqabiqaaaqaaiaad6gacqGHRaWkcaWGPbaabaGaamOAaa aaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWGQbaabaGa amOBaiabgUcaRiaaikdaaaaacaGLOaGaayzkaaGaaGypamaalaaaba GaamOBaiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaaIOaGaamOB aiabgUcaRiaaiodacaaIPaGaaGikaiaad6gacqGHRaWkcaaI0aGaaG ykaaqaaiaaigdacaaIYaaaaiaaiYcacaaMf8UaamOBaiabgwMiZkaa isdacaaIUaaaaa@781E@   (2)

Доказательство. В [3] для числа B k (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaakiaaiIcacaWGUbGaaGykaaaa@3A3C@  помеченных последовательно—параллельных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@  —циклических 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связных графов с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  вершинами при nk+2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw MiZkaadUgacqGHRaWkcaaIYaaaaa@3B3E@  получено выражение

B k (n)= n! 2 i=k n2 j=n+k2 n+i2 (1) j (j+1) i2 i! n3 i1 ni2 j+k1 j+1 n+k1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaakiaaiIcacaWGUbGaaGykaiaai2dadaWcaaqa aiaad6gacaaIHaaabaGaaGOmaaaadaaeWbqabSqaaiaadMgacaaI9a Gaam4Aaaqaaiaad6gacqGHsislcaaIYaaaniabggHiLdGcdaaeWbqa bSqaaiaadQgacaaI9aGaamOBaiabgUcaRiaadUgacqGHsislcaaIYa aabaGaamOBaiabgUcaRiaadMgacqGHsislcaaIYaaaniabggHiLdGc caaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadQgaaaGcda WcaaqaaiaaiIcacaWGQbGaey4kaSIaaGymaiaaiMcadaahaaWcbeqa aiaadMgacqGHsislcaaIYaaaaaGcbaGaamyAaiaaigcaaaWaaeWaae aafaqabeGabaaabaGaamOBaiabgkHiTiaaiodaaeaacaWGPbGaeyOe I0IaaGymaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaaca WGUbGaeyOeI0IaamyAaiabgkHiTiaaikdaaeaacaWGQbGaey4kaSIa am4AaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaWaaeWaaeaafaqabe GabaaabaGaamOAaiabgUcaRiaaigdaaeaacaWGUbGaey4kaSIaam4A aiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaaGOlaaaa@78F9@ (3)

Так как полный граф K 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaI0aaabeaaaaa@37B1@  является трициклическим, то все унициклические и бициклические 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связные графы не содержат в качестве подграфа подразбиения K 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaI0aaabeaaaaa@37B1@  и потому являются последовательно—параллельными графами.

Унициклический 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связный граф MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ это простой цикл с помеченными вершинами. Число таких циклов известно (см. [8, с. 20]); следовательно, B 1 (n)=(n1)!/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWGUbGaaGykaiaai2dacaaIOaGa amOBaiabgkHiTiaaigdacaaIPaGaaGyiaiaai+cacaaIYaaaaa@40EE@ , и при k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaaaaa@3869@  из (3) получим

i=1 n2 j=n1 n+i2 (1) j (j+1) i2 i! n3 i1 n+i2 j j+1 n = 1 n ,n3. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaigdaaeaacaWGUbGaeyOeI0IaaGOmaaqdcqGH ris5aOWaaabCaeqaleaacaWGQbGaaGypaiaad6gacqGHsislcaaIXa aabaGaamOBaiabgUcaRiaadMgacqGHsislcaaIYaaaniabggHiLdGc caaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadQgaaaGcda WcaaqaaiaaiIcacaWGQbGaey4kaSIaaGymaiaaiMcadaahaaWcbeqa aiaadMgacqGHsislcaaIYaaaaaGcbaGaamyAaiaaigcaaaWaaeWaae aafaqabeGabaaabaGaamOBaiabgkHiTiaaiodaaeaacaWGPbGaeyOe I0IaaGymaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaaca WGUbGaey4kaSIaamyAaiabgkHiTiaaikdaaeaacaWGQbaaaaGaayjk aiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadQgacqGHRaWkcaaIXa aabaGaamOBaaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaaIXaaa baGaamOBaaaacaaISaGaaGzbVlaad6gacqGHLjYScaaIZaGaaGOlaa aa@70BB@   (4)

Э. Райт доказал (см. [10]), что число помеченных бициклических блоков с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  вершинами равно (n3)(n+2)/24 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHsislcaaIZaGaaGykaiaaiIcacaWGUbGaey4kaSIaaGOmaiaa iMcacaaIVaGaaGOmaiaaisdaaaa@4022@ ; при k=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIYaaaaa@386A@  из (3) получим

i=2 n2 j=n n+i2 (1) j (j+1) i2 i! n3 i1 n+i2 j j+1 n+1 = (n3)(n+2) 12 ,n4. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaikdaaeaacaWGUbGaeyOeI0IaaGOmaaqdcqGH ris5aOWaaabCaeqaleaacaWGQbGaaGypaiaad6gaaeaacaWGUbGaey 4kaSIaamyAaiabgkHiTiaaikdaa0GaeyyeIuoakiaaiIcacqGHsisl caaIXaGaaGykamaaCaaaleqabaGaamOAaaaakmaalaaabaGaaGikai aadQgacqGHRaWkcaaIXaGaaGykamaaCaaaleqabaGaamyAaiabgkHi TiaaikdaaaaakeaacaWGPbGaaGyiaaaadaqadaqaauaabeqaceaaae aacaWGUbGaeyOeI0IaaG4maaqaaiaadMgacqGHsislcaaIXaaaaaGa ayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaad6gacqGHRaWkca WGPbGaeyOeI0IaaGOmaaqaaiaadQgaaaaacaGLOaGaayzkaaWaaeWa aeaafaqabeGabaaabaGaamOAaiabgUcaRiaaigdaaeaacaWGUbGaey 4kaSIaaGymaaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaaIOaGa amOBaiabgkHiTiaaiodacaaIPaGaaGikaiaad6gacqGHRaWkcaaIYa GaaGykaaqaaiaaigdacaaIYaaaaiaaiYcacaaMf8UaamOBaiabgwMi ZkaaisdacaaIUaaaaa@7873@   (5)

Преобразуем тождества (4) и (5). Заменим n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  на n+2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgU caRiaaikdaaaa@3888@ ; поскольку

n1 i1 = i n n i , j+1 n+2 = j+1 n+2 j n+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaamOBaiabgkHiTiaaigdaaeaacaWGPbGaeyOeI0Ia aGymaaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaWGPbaabaGaam OBaaaadaqadaqaauaabeqaceaaaeaacaWGUbaabaGaamyAaaaaaiaa wIcacaGLPaaacaaISaGaaGzbVpaabmaabaqbaeqabiqaaaqaaiaadQ gacqGHRaWkcaaIXaaabaGaamOBaiabgUcaRiaaikdaaaaacaGLOaGa ayzkaaGaaGypamaalaaabaGaamOAaiabgUcaRiaaigdaaeaacaWGUb Gaey4kaSIaaGOmaaaadaqadaqaauaabeqaceaaaeaacaWGQbaabaGa amOBaiabgUcaRiaaigdaaaaacaGLOaGaayzkaaGaaGilaaaa@57A3@

тождество (4) эквивалентно тождеству (1), а тождество (5) эквивалентно тождеству (2).

Дадим теперь не зависящее от перечисления графов доказательство тождеств (1) и (2).

Обозначим левую часть тождества (1) через L(n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaaaa@3920@ . Поскольку n k =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaamOBaaqaaiaadUgaaaaacaGLOaGaayzkaaGaaGyp aiaaicdaaaa@3AF1@  при 0n<k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaad6gacaaI8aGaam4Aaaaa@3B0F@ , то нижний индекс во внутренней сумме можно заменить на 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36B1@ . С помощью метода коэффициентов (см. [5, с. 8]) имеем

(j+1) i1 (i1)! =Coe f z e (j+1)z z i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIOaGaamOAaiabgUcaRiaaigdacaaIPaWaaWbaaSqabeaacaWGPbGa eyOeI0IaaGymaaaaaOqaaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiM cacaaIHaaaaiaai2dacaWGdbGaam4BaiaadwgacaWGMbWaaSbaaSqa aiaadQhaaeqaaOGaamyzamaaCaaaleqabaGaaGikaiaadQgacqGHRa WkcaaIXaGaaGykaiaadQhaaaGccaWG6bWaaWbaaSqabeaacqGHsisl caWGPbaaaOGaaGilaaaa@50D0@

L(n)= i=1 n n i Coe f z e z z i j=0 n+i (1) j e jz n+i j j n+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGym aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaaqahabeWc baGaamOAaiaai2dacaaIWaaabaGaamOBaiabgUcaRiaadMgaa0Gaey yeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaamOA aaaakiaadwgadaahaaWcbeqaaiaadQgacaWG6baaaOWaaeWaaeaafa qabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaacaWGQbaaaaGaayjk aiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadQgaaeaacaWGUbGaey 4kaSIaaGymaaaaaiaawIcacaGLPaaacaaMe8UaaGOlaaaa@6869@

В силу комбинаторного тождества

j=0 m m j j l x j = m l x l (1+x) ml MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGQbGaaGypaiaaicdaaeaacaWGTbaaniabggHiLdGcdaqadaqa auaabeqaceaaaeaacaWGTbaabaGaamOAaaaaaiaawIcacaGLPaaada qadaqaauaabeqaceaaaeaacaWGQbaabaGaamiBaaaaaiaawIcacaGL PaaacaWG4bWaaWbaaSqabeaacaWGQbaaaOGaaGypamaabmaabaqbae qabiqaaaqaaiaad2gaaeaacaWGSbaaaaGaayjkaiaawMcaaiaadIha daahaaWcbeqaaiaadYgaaaGccaaIOaGaaGymaiabgUcaRiaadIhaca aIPaWaaWbaaSqabeaacaWGTbGaeyOeI0IaamiBaaaaaaa@5217@ , (6)

(см. [6, с. 625]) имеем

L(n)= i=1 n n i Coe f z e z z i n+i n+1 (1) n+1 e (n+1)z (1z) i1 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGym aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaabmaabaqb aeqabiqaaaqaaiaad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRi aaigdaaaaacaGLOaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaadwgadaahaaWcbe qaaiaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcacaWG6baaaOGaaGik aiaaigdacqGHsislcaWG6bGaaGykamaaCaaaleqabaGaamyAaiabgk HiTiaaigdaaaGccaaI9aaaaa@6777@

= i=1 n n i n+i n+1 (1) n1 Coe f z 1 z e (n+2)z 1 e z z i1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWa aeWaaeaafaqabeGabaaabaGaamOBaaqaaiaadMgaaaaacaGLOaGaay zkaaWaaeWaaeaafaqabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaa caWGUbGaey4kaSIaaGymaaaaaiaawIcacaGLPaaacaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGa am4qaiaad+gacaWGLbGaamOzamaaBaaaleaacaWG6baabeaakmaala aabaGaaGymaaqaaiaadQhaaaGaamyzamaaCaaaleqabaGaaGikaiaa d6gacqGHRaWkcaaIYaGaaGykaiaadQhaaaGcdaqadaqaamaalaaaba GaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaadQhaaaaakeaacaWG 6baaaaGaayjkaiaawMcaamaaCaaaleqabaGaamyAaiabgkHiTiaaig daaaGccaaIUaaaaa@6338@

Введем обозначение

f(z)= e (n+2)z ( 1 e z z ) i1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacaaIOaGaamOB aiabgUcaRiaaikdacaaIPaGaamOEaaaakiaaiIcadaWcaaqaaiaaig dacqGHsislcaWGLbWaaWbaaSqabeaacaWG6baaaaGcbaGaamOEaaaa caaIPaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGymaaaakiaaysW7ca aIUaaaaa@4B71@

Функция f(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaaaa@3946@  аналитична в нуле, и по формуле для вычета в полюсе первого порядка имеем

Coe f z f(z) z = lim z0 f(z),L(n)= i=1 n n i n+i n+1 (1) n1 (1) i1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaad+ gacaWGLbGaamOzamaaBaaaleaacaWG6baabeaakmaalaaabaGaamOz aiaaiIcacaWG6bGaaGykaaqaaiaadQhaaaGaaGypamaawafabeWcba GaamOEaiabgkziUkaaicdaaeqakeaaciGGSbGaaiyAaiaac2gaaaGa amOzaiaaiIcacaWG6bGaaGykaiaaiYcacaaMf8UaamitaiaaiIcaca WGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqa aiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6gaae aacaWGPbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaa d6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRiaaigdaaaaacaGLOa GaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWG UbGaeyOeI0IaaGymaaaakiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaamyAaiabgkHiTiaaigdaaaGccaaIUaaaaa@6CE0@

Используем теперь комбинаторное тождество

i=0 m (1) i m i a+i l =( 1) m a lm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaicdaaeaacaWGTbaaniabggHiLdGccaaIOaGa eyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadMgaaaGcdaqadaqaau aabeqaceaaaeaacaWGTbaabaGaamyAaaaaaiaawIcacaGLPaaadaqa daqaauaabeqaceaaaeaacaWGHbGaey4kaSIaamyAaaqaaiaadYgaaa aacaGLOaGaayzkaaGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaa CaaaleqabaGaamyBaaaakmaabmaabaqbaeqabiqaaaqaaiaadggaae aacaWGSbGaeyOeI0IaamyBaaaaaiaawIcacaGLPaaaaaa@52D3@ , (7)

(см. [8, с. 619]). Так как в L(n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaaaa@3920@  под знаком суммы второй биномиальный коэффициент равен нулю при i=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIWaaaaa@3866@ , то окончательно получим

L(n)=( 1) n i=0 n n i n+i n+1 (1) i =( 1) n (1) n n 1 =n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaah aaWcbeqaaiaad6gaaaGcdaaeWbqabSqaaiaadMgacaaI9aGaaGimaa qaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6ga aeaacaWGPbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaai aad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRiaaigdaaaaacaGL OaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaaca WGPbaaaOGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqa baGaamOBaaaakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba GaamOBaaaakmaabmaabaqbaeqabiqaaaqaaiaad6gaaeaacaaIXaaa aaGaayjkaiaawMcaaiaai2dacaWGUbGaaGOlaaaa@614A@

Для тождества (2) опять с помощью метода коэффициентов имеем

L(n)= i=2 n n i Coe f z e z z i j=0 n+i (1) j e jz n+i j j n+2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGOm aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaaqahabeWc baGaamOAaiaai2dacaaIWaaabaGaamOBaiabgUcaRiaadMgaa0Gaey yeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaamOA aaaakiaadwgadaahaaWcbeqaaiaadQgacaWG6baaaOWaaeWaaeaafa qabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaacaWGQbaaaaGaayjk aiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadQgaaeaacaWGUbGaey 4kaSIaaGOmaaaaaiaawIcacaGLPaaacaaIUaaaaa@66DE@

В силу комбинаторного тождества (6) найдем

L(n)= i=2 n n i Coe f z e z z i n+i n+2 (1) n e (n+2)z (1 e z ) i2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGOm aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaabmaabaqb aeqabiqaaaqaaiaad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRi aaikdaaaaacaGLOaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGUbaaaOGaamyzamaaCaaaleqabaGaaGikaiaad6 gacqGHRaWkcaaIYaGaaGykaiaadQhaaaGccaaIOaGaaGymaiabgkHi TiaadwgadaahaaWcbeqaaiaadQhaaaGccaaIPaWaaWbaaSqabeaaca WGPbGaeyOeI0IaaGOmaaaakiaai2daaaa@66FF@

= i=2 n n i n+i n+2 (1) n Coe f z 1 z 2 e (n+3)z 1 e z z i2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamyAaiaai2dacaaIYaaabaGaamOBaaqdcqGHris5aOWa aeWaaeaafaqabeGabaaabaGaamOBaaqaaiaadMgaaaaacaGLOaGaay zkaaWaaeWaaeaafaqabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaa caWGUbGaey4kaSIaaGOmaaaaaiaawIcacaGLPaaacaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaad6gaaaGccaWGdbGaam4Baiaa dwgacaWGMbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacaaIXaaaba GaamOEamaaCaaaleqabaGaaGOmaaaaaaGccaWGLbWaaWbaaSqabeaa caaIOaGaamOBaiabgUcaRiaaiodacaaIPaGaamOEaaaakmaabmaaba WaaSaaaeaacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaamOEaaaa aOqaaiaadQhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGPbGaey OeI0IaaGOmaaaakiaai6caaaa@6287@

Введем обозначение

f(z)= e (n+3)z 1 e z z i2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacaaIOaGaamOB aiabgUcaRiaaiodacaaIPaGaamOEaaaakmaabmaabaWaaSaaaeaaca aIXaGaeyOeI0IaamyzamaaCaaaleqabaGaamOEaaaaaOqaaiaadQha aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGOmaa aakiaai6caaaa@4A0A@

Функция f(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaaaa@3946@  аналитична в нуле, и по формуле для вычета в полюсе второго порядка найдем

Coefzfzz2limz0f'zn+en+z1ezzi2+

+(i2) e (n+3)z 1 e z z i3 z e z + e z 1 z 2 =( 1) i n+3+ i2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadMgacqGHsislcaaIYaGaaGykaiaadwgadaahaaWcbeqaaiaa iIcacaWGUbGaey4kaSIaaG4maiaaiMcacaWG6baaaOWaaeWaaeaada WcaaqaaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaWG6baaaaGc baGaamOEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaadMgacqGHsi slcaaIZaaaaOWaaSaaaeaacqGHsislcaWG6bGaamyzamaaCaaaleqa baGaamOEaaaakiabgUcaRiaadwgadaahaaWcbeqaaiaadQhaaaGccq GHsislcaaIXaaabaGaamOEamaaCaaaleqabaGaaGOmaaaaaaGccaaI 9aGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGPbaaaO WaaeWaaeaacaWGUbGaey4kaSIaaG4maiabgUcaRmaalaaabaGaamyA aiabgkHiTiaaikdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaaiYcaaa a@62E2@

L(n)= i=2 n n i n+i n+2 (1) n+i n+2+ i 2 = L 1 (n)+ L 2 (n). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGOm aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqa aiaad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRiaaikdaaaaaca GLOaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaa caWGUbGaey4kaSIaamyAaaaakmaabmaabaGaamOBaiabgUcaRiaaik dacqGHRaWkdaWcaaqaaiaadMgaaeaacaaIYaaaaaGaayjkaiaawMca aiaai2dacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaad6gaca aIPaGaey4kaSIaamitamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG UbGaaGykaiaai6caaaa@614C@

Еще раз применим комбинаторное тождество (7):

L 1 (n)=(n+2)( 1) n i=2 n n i n+i n+2 (1) i =(n+2) n 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiaaiIcacaWGUbGaaGykaiaai2dacaaIOaGa amOBaiabgUcaRiaaikdacaaIPaGaaGikaiabgkHiTiaaigdacaaIPa WaaWbaaSqabeaacaWGUbaaaOWaaabCaeqaleaacaWGPbGaaGypaiaa ikdaaeaacaWGUbaaniabggHiLdGcdaqadaqaauaabeqaceaaaeaaca WGUbaabaGaamyAaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaa aeaacaWGUbGaey4kaSIaamyAaaqaaiaad6gacqGHRaWkcaaIYaaaaa GaayjkaiaawMcaaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqa baGaamyAaaaakiaai2dacaaIOaGaamOBaiabgUcaRiaaikdacaaIPa WaaeWaaeaafaqabeGabaaabaGaamOBaaqaaiaaikdaaaaacaGLOaGa ayzkaaGaaGOlaaaa@6003@

Так как i n i =n n1 i1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaabm aabaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaaGaayjkaiaawMca aiaai2dacaWGUbWaaeWaaeaafaqabeGabaaabaGaamOBaiabgkHiTi aaigdaaeaacaWGPbGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaaaaa@42DD@ , в силу тождества (7) имеем

L 2 (n)= 1 2 (1) n i=1 n i n i n+i n+2 (1) i = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaad6gacaaIPaGa aGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiabgkHiTiaaig dacaaIPaWaaWbaaSqabeaacaWGUbaaaOWaaabCaeqaleaacaWGPbGa aGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGPbWaaeWaaeaafa qabeGabaaabaGaamOBaaqaaiaadMgaaaaacaGLOaGaayzkaaWaaeWa aeaafaqabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaacaWGUbGaey 4kaSIaaGOmaaaaaiaawIcacaGLPaaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadMgaaaGccaaI9aaaaa@59AB@

= n 2 (1) n1 i=0 n1 n1 i n+i+1 n+2 (1) i+1 = n 2 n+1 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaamOBaaqaaiaaikdaaaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakmaaqahabeWcbaGaam yAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoa kmaabmaabaqbaeqabiqaaaqaaiaad6gacqGHsislcaaIXaaabaGaam yAaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWGUbGa ey4kaSIaamyAaiabgUcaRiaaigdaaeaacaWGUbGaey4kaSIaaGOmaa aaaiaawIcacaGLPaaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWc beqaaiaadMgacqGHRaWkcaaIXaaaaOGaaGypamaalaaabaGaamOBaa qaaiaaikdaaaWaaeWaaeaafaqabeGabaaabaGaamOBaiabgUcaRiaa igdaaeaacaaIZaaaaaGaayjkaiaawMcaaiaai6cacaaMf8UaaGzbVd aa@6465@

Окончательно получим

L(n)=(n+2) n 2 + n 2 n+1 3 = 1 12 n(n1)(n+3)(n+4). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dacaaIOaGaamOBaiabgUcaRiaaikdacaaI PaWaaeWaaeaafaqabeGabaaabaGaamOBaaqaaiaaikdaaaaacaGLOa GaayzkaaGaey4kaSYaaSaaaeaacaWGUbaabaGaaGOmaaaadaqadaqa auaabeqaceaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaaiodaaaaaca GLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiaaigdacaaIYaaa aiaad6gacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaGikaiaad6 gacqGHRaWkcaaIZaGaaGykaiaaiIcacaWGUbGaey4kaSIaaGinaiaa iMcacaaIUaaaaa@5949@

Отметим, что для чисел помеченных последовательно—параллельных трициклических и тетрациклических блоков известны выражения в виде многочленов от числа вершин графа (см. [1] и [2], соответственно). Поэтому из формулы (3) при k=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIZaaaaa@386B@  и k=4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaI0aaaaa@386C@  можно получить еще два тождества типа (1). Однако степень многочленов от n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  в правой части тождеств быстро растет; при k=4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaI0aaaaa@386C@  она равна 9 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaaaa@36BA@ .

Автор благодарит профессора В. К. Леонтьева за обсуждение работы.

×

About the authors

Vitaly A. Vobly

Всероссийский институт научной и технической информации РАН

Author for correspondence.
Email: vitvobl@yandex.ru
Russian Federation, Москва

References

  1. Воблый В. Л.. Мелешко Л. К. О числе помеченных последовательно-параллельных трициклических блоков// Мат. XV Междунар. конф. «Алгебра, теория чисел и дискретная геометрия. Современные проблемы и приложения» (Тула, 28-31 мая 2018 г.)). — Тула: ТПГУ. — С. 168-170.
  2. Воблый В. А. Число помеченных последовательно-параллельных тетрациклических блоков// Прикл. дискр. мат. — 2020. — № 47. — С. 57-61.
  3. Вобл-ый В. А. О перечислении помеченных последовательно-параллельных ^-циклических 2-связных графов// Дискр. анал. исслед. опер. — 2021. — 28, № 1. — С. 7-14.
  4. Зыков А. А. Основы теории графов. — М.: Наука, 1987.
  5. Леонтьев В. К. Избранные задачи комбинаторного анализа. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2001.
  6. Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Т 1. — М.: Наука, 1981.
  7. Bodirsky M., Gimenez O, Kang M, Noy M. Enumeration and limit laws of series-parallel graphs// Eur. J. Combin. — 2007. — 28, № 8. — P. 2091-2105.
  8. Moon J. W. Counting Labelled Trees. — Can. Math. Monogr., 1970.
  9. Raghavan S. Low-connectivity network design on series-parallel graphs// Networks. — 2004. — 43, № 3. P. 163-176.
  10. Wright E. M. The number of connected sparsely edged graphs. II. Smooth graphs and blocks// J. Graph Theory. — 1978. — 2, № 4. — P. 299-305.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Vobly V.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».