Timely determination of static stability margins in power supply systems equipped with distributed generation installations

Cover Page

Cite item

Full Text

Abstract

The article aims to develop a methodology to ensure timely determination of the margins of static aperiodic stability in power supply systems, at the nodal points of which distributed generation units are installed. The authors used mathematical methods and algorithms based on the application of limiting regime equations. Transitional processes were analysed for various points in the space of controlled mode parameters according to the simulation modelling in Matlab using the Simulink and SimPowerSystems packages. On the basis of the obtained results, an effective technique for analysing stability margins in electrical networks with distributed generation units was implemented. This method is applicable in design problems, as well as in operational and emergency control. The conducted theoretical analysis and computer modelling showed the effectiveness of the proposed methodology for calculating stability margins; the nondegeneracy of the Jacobi matrix of limiting regime equations at the solution point ensures the guaranteed reliability of the results. It was shown that an alternative approach to solving the problem of timely determination of aperiodic stability margins can be implemented on the basis of limiting regime equation with increased nonlinearity. Dynamic modelling of an electrical network with distributed generation units confirmed the correctness of determining the stability margins calculated using limiting regime equations. The developed technique can be recommended for practical use in the design of power supply systems or in operational control of synchronous generators. In particular, the presented methodology can be used to implement a multi-agent emergency control system for distributed generation installations located in generalpurpose distribution electrical networks. 

About the authors

Yu. N. Bulatov

Bratsk State University

Email: bulatovyura@yandex.ru

A. V. Kryukov

Irkutsk National Research Technical University; Irkutsk State Transport University

К. V. Suslov

Irkutsk National Research Technical University

Email: souslov@istu.edu

A. V. Cherepanov

Irkutsk State Transport University

Email: smart_grid@mail.ru

References

  1. Васин В.П., Кондакова В.Г. Исследование областей существования режима электроэнергетических систем с помощью степенных рядов // Известия Российской Академии наук. Энергетика. 1995. № 1. С. 47–57.
  2. Ayuev B.I., Davydov V.V., Erokhin P.M. Fast and reliable method of searching power system marginal states // IEEE Transactions on Power Systems. 2016. Vol. 31. No. 6. P. 4525–4533. https://doi.org/10.1109/TPWRS.2016.2538299
  3. Makarov Yu.V., Ma Jian, Dong ZhaoYang. Determining Static Stability Boundaries Using A Non-Iterative Method // IEEE Power Engineering Society General Meeting. 2007. https://doi.org/10.1109/PES.2007.385897
  4. Кирштейн Б.Х., Литвинов Г.Л. Анализ установившихся режимов электроэнергетических систем и тропическая геометрия уравнений балансов мощности над комплексными мультиполями // Автоматика и телемеханика. 2014. Вып. 10. С. 110–124.
  5. Гаджиев М.Г., Мисриханов М.Ш., Рябченко В.Н. Управляемость, наблюдаемость и устойчивость электроэнергетических систем // Машиностроение: сетевой электронный научный журнал. 2017. Т. 5. № 1. С. 72–84.
  6. Крюков А.В. Предельные режимы электроэнергетических систем. Иркутск: Изд-во ИрГТУ, 2012. 236 с.
  7. Rugthaicharoencheep N., Auchariyamet S. Technical and economic impacts of distributed generation on distribution system // International Journal of Electrical, Electronic and Communication Sciences. 2012. Vol. 6. P. 385– 389. https://doi.org/10.5281/zenodo.1327636
  8. Buchholz B.M., Styczynski Z. Smart Grids – fundamentals and technologies in electricity networks. Heidelberg New York Dordrecht, London: Springer, 2014. 396 р.
  9. Magdi S.M., Fouad M. AL-Sunni. Control and optimization of distributed generation systems. Cham: Springer International Publishing; Imprint: Springer, 2015. 578 p.
  10. Voropai N.I., Stychinsky Z.A. Renewable energy sources: theoretical foundations, technologies, technical characteristics, economics. Magdeburg: Otto-vonGuericke-Universität, 2010. 223 p.
  11. Saleh M.S., Althaibani A., Esa Y., Mhandi Y., Mohamed A.A. Impact of clustering microgrids on their stability and resilience during blackouts // Proceedings on International Conference on Smart Grid and Clean Energy Technologies. New York: IEEE, 2016. P. 195–200.. URL: https://academicworks.cuny.edu/cgi/viewcontent.cgi?articl e=1623&context=cc_pubs (12.05.2020).
  12. Mohsen F., Saberian A.M., Hashim H., Mohd A.M.R. Application of smart power grid in developing countries // IEEE 7th International Power Engineering and Optimization Conference. 2013. https://doi.org/10.1109/PEOCO.2013.6564586
  13. Wang Jun, Huang Alex Q., Sung Woongje, Yu Liu, Baliga B.J. Smart Grid technologies // IEEE Industrial Electronics Magazine. 2009. Vol. 3. Issue 2. P. 16–23. https://doi.org/10.1109/MIE.2009.932583
  14. Shen Xinwei, Zhu Shouzhen, Zheng Jinghong, Han Yingduo, Li Qingsheng, Nong Jing, et al. Active distribution network expansion planning integrated with centralized and distributed Energy Storage System // IEEE General Meeting Power& Energy Society. 2015. https://doi.org/10.1109/PESGM.2015.7286069
  15. Martínez Ceseña E., Capuder T., Mancarella P. Flexible distributed multienergy generation system expansion planning under uncertainty // IEEE Power and Energy Society General Meeting (Boston, 17–21 July 2016). Boston: IEEE, 2016. Vol. 7. Р. 348–357. https://doi.org/10.1109/PESGM.2016.7741088
  16. Olivares D.E., Etemadi A.H., Kazerani M., GomisBellmunt O., Palma-Behnke R. Trends in Microgrid control // IEEE Transactions on Smart Grid. 2014. Vol. 5. No. 4. P. 1905–1919.
  17. Ellabban O., Abu-Rub H., Blaabjerg F. Renewable energy resources: current status, future prospects and their enabling technology // Renewable and Sustainable Energy Reviews. 2014. Vol. 39. P. 748–764. https://doi.org/10.1016/J.RSER.2014.07.113
  18. Xie Wenjing, Xia Xiaohua. Distributed energy dispatch of electrical energy storage systems using consensus control approach // IFAC-PapersOnLine. 2018. Vol. 51. Issue 13. P. 229–234. https://doi.org/10.1016/j.ifacol.2018.07.283
  19. Bulatov Yu., Kryukov A. Prevention of outages in power systems with distributed generation plants // Energy Systems Research. 2019. Vol. 2. No. 1. P. 68–83.
  20. Bulatov Yu.N., Kryukov A.V. Emergency control in power supply systems with distributed generation plants // International Russian Automation Conference (Sochi, 9– 16 September 2018). Sochi: IEEE, 2019. P. 38–42. https://doi.org/10.1109/RUSAUTOCON.2018.8501807

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).