Оперативное определение запасов статической устойчивости в системах электроснабжения с установками распределенной генерации

Обложка

Цитировать

Полный текст

Аннотация

Цель исследований – разработка методики, обеспечивающей оперативное определение запасов статической  апериодической устойчивости в системах электроснабжения, в узловых точках которых подключены установки распределенной генерации. Использовались математические методы и алгоритмы, основанные на применении уравнений предельных режимов. Переходные процессы анализировались для различных точек пространства регулируемых параметров режима по данным имитационного моделирования в среде Matlab с применением пакетов Simulink и SimPowerSystems. На основе полученных результатов расчета и компьютерного моделирования реализована эффективная методика анализа запасов устойчивости в электрических сетях с установками распределенной генерации, применимая в задачах проектирования, а также оперативного и противоаварийного управления. Теоретический анализ и результаты компьютерного моделирования показывают эффективность использования предлагаемой методики расчета запасов устойчивости; невырожденность матрицы Якоби уравнений предельных режимов в точке решения обеспечивает гарантированную надежность получения результатов. Показано, что альтернативный подход к решению задачи оперативного определения запасов апериодической устойчивости может быть реализован на основе уравнений предельных режимов с повышенной нелинейностью. Динамическое моделирование электрической сети с установками распределенной генерации подтвердило правильность определения запасов устойчивости, рассчитанных с помощью уравнений предельных режимов. Разработанная методика оперативного определения запасов апериодической устойчивости может быть рекомендована для практического применения при проектировании систем электроснабжения или оперативном управлении синхронными генераторами; в частности, представленная методика позволит реализовать мультиагентную систему противоаварийного управления установками распределенной генерации, размещенными в распределительных электрических сетях общего назначения. 

Об авторах

Ю. Н. Булатов

Братский государственный университет

Email: bulatovyura@yandex.ru

А. В. Крюков

Иркутский государственный университет путей сообщения; Иркутский национальный исследовательский технический университет

К. В. Суслов

Иркутский национальный исследовательский технический университет

Email: souslov@istu.edu

А. В. Черепанов

Иркутский государственный университет путей сообщения

Email: smart_grid@mail.ru

Список литературы

  1. Васин В.П., Кондакова В.Г. Исследование областей существования режима электроэнергетических систем с помощью степенных рядов // Известия Российской Академии наук. Энергетика. 1995. № 1. С. 47–57.
  2. Ayuev B.I., Davydov V.V., Erokhin P.M. Fast and reliable method of searching power system marginal states // IEEE Transactions on Power Systems. 2016. Vol. 31. No. 6. P. 4525–4533. https://doi.org/10.1109/TPWRS.2016.2538299
  3. Makarov Yu.V., Ma Jian, Dong ZhaoYang. Determining Static Stability Boundaries Using A Non-Iterative Method // IEEE Power Engineering Society General Meeting. 2007. https://doi.org/10.1109/PES.2007.385897
  4. Кирштейн Б.Х., Литвинов Г.Л. Анализ установившихся режимов электроэнергетических систем и тропическая геометрия уравнений балансов мощности над комплексными мультиполями // Автоматика и телемеханика. 2014. Вып. 10. С. 110–124.
  5. Гаджиев М.Г., Мисриханов М.Ш., Рябченко В.Н. Управляемость, наблюдаемость и устойчивость электроэнергетических систем // Машиностроение: сетевой электронный научный журнал. 2017. Т. 5. № 1. С. 72–84.
  6. Крюков А.В. Предельные режимы электроэнергетических систем. Иркутск: Изд-во ИрГТУ, 2012. 236 с.
  7. Rugthaicharoencheep N., Auchariyamet S. Technical and economic impacts of distributed generation on distribution system // International Journal of Electrical, Electronic and Communication Sciences. 2012. Vol. 6. P. 385– 389. https://doi.org/10.5281/zenodo.1327636
  8. Buchholz B.M., Styczynski Z. Smart Grids – fundamentals and technologies in electricity networks. Heidelberg New York Dordrecht, London: Springer, 2014. 396 р.
  9. Magdi S.M., Fouad M. AL-Sunni. Control and optimization of distributed generation systems. Cham: Springer International Publishing; Imprint: Springer, 2015. 578 p.
  10. Voropai N.I., Stychinsky Z.A. Renewable energy sources: theoretical foundations, technologies, technical characteristics, economics. Magdeburg: Otto-vonGuericke-Universität, 2010. 223 p.
  11. Saleh M.S., Althaibani A., Esa Y., Mhandi Y., Mohamed A.A. Impact of clustering microgrids on their stability and resilience during blackouts // Proceedings on International Conference on Smart Grid and Clean Energy Technologies. New York: IEEE, 2016. P. 195–200.. URL: https://academicworks.cuny.edu/cgi/viewcontent.cgi?articl e=1623&context=cc_pubs (12.05.2020).
  12. Mohsen F., Saberian A.M., Hashim H., Mohd A.M.R. Application of smart power grid in developing countries // IEEE 7th International Power Engineering and Optimization Conference. 2013. https://doi.org/10.1109/PEOCO.2013.6564586
  13. Wang Jun, Huang Alex Q., Sung Woongje, Yu Liu, Baliga B.J. Smart Grid technologies // IEEE Industrial Electronics Magazine. 2009. Vol. 3. Issue 2. P. 16–23. https://doi.org/10.1109/MIE.2009.932583
  14. Shen Xinwei, Zhu Shouzhen, Zheng Jinghong, Han Yingduo, Li Qingsheng, Nong Jing, et al. Active distribution network expansion planning integrated with centralized and distributed Energy Storage System // IEEE General Meeting Power& Energy Society. 2015. https://doi.org/10.1109/PESGM.2015.7286069
  15. Martínez Ceseña E., Capuder T., Mancarella P. Flexible distributed multienergy generation system expansion planning under uncertainty // IEEE Power and Energy Society General Meeting (Boston, 17–21 July 2016). Boston: IEEE, 2016. Vol. 7. Р. 348–357. https://doi.org/10.1109/PESGM.2016.7741088
  16. Olivares D.E., Etemadi A.H., Kazerani M., GomisBellmunt O., Palma-Behnke R. Trends in Microgrid control // IEEE Transactions on Smart Grid. 2014. Vol. 5. No. 4. P. 1905–1919.
  17. Ellabban O., Abu-Rub H., Blaabjerg F. Renewable energy resources: current status, future prospects and their enabling technology // Renewable and Sustainable Energy Reviews. 2014. Vol. 39. P. 748–764. https://doi.org/10.1016/J.RSER.2014.07.113
  18. Xie Wenjing, Xia Xiaohua. Distributed energy dispatch of electrical energy storage systems using consensus control approach // IFAC-PapersOnLine. 2018. Vol. 51. Issue 13. P. 229–234. https://doi.org/10.1016/j.ifacol.2018.07.283
  19. Bulatov Yu., Kryukov A. Prevention of outages in power systems with distributed generation plants // Energy Systems Research. 2019. Vol. 2. No. 1. P. 68–83.
  20. Bulatov Yu.N., Kryukov A.V. Emergency control in power supply systems with distributed generation plants // International Russian Automation Conference (Sochi, 9– 16 September 2018). Sochi: IEEE, 2019. P. 38–42. https://doi.org/10.1109/RUSAUTOCON.2018.8501807

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).