DYNAMICS OF EVOLUTION OF COASTAL BLOWOUT (VISTULA SPIT, SOUTH-EASTERN BALTIC)

Cover Page

Cite item

Full Text

Abstract

The findings of a 12-year study of dune complex element development on the Vistula Spit of the Baltic Sea are hereby presented. The focal point of this study is an intensively developing blowout basin in the context of anthropogenic impact. The assessment of landform development over time was conducted by determining geomorphologic changes using digital elevation models (DEMs). These DEMs were obtained by means of topographic terrestrial laserscanning (TLS) measurements or aerial triangulation with a ground control point, accompanied by GPS-RTK measurements. The findings indicated that the rate of desertification was contingent on the composition of plant communities and was sustained by pulse sand supply, facilitated by a network of channels. Grassy areas were the most actively assimilated, exhibiting low roughness, while tree and shrub vegetation, in contrast, exerted a force that directed the wind-sand flow, thereby accumulating a thickness in front of it. The activity of the basin was observed at its peak at the point of connection with the beach. A decline in activity was noted as the basin reached a critical width, at which point the Venturi effect ceased to be effective under the prevailing wind climate.

About the authors

Alexander R Danchenkov

Shirshov Institute of Oceanology RAS

E. D. Piterniex

N. S. Belov

Email: grogi22@yandex.ru

References

  1. Бадюкова Е. Н., Жиндарев Л. А., Лукьянова С. А., Соловьева Г. Д. Геолого-геоморфологическое строение Балтийской (Вислинской) косы // Океанология. 2011. № 51(4). C. 675—682
  2. Белов Н. С., Шаплыгина Т. В., Данченков А. Р., Волкова И. И. Оценка воздействия штормов 2022 года на Балтийскую косу (1-й км) // Проблемы приграничья. Новые траектории международного сотрудничества. 2022. C. 134—138.
  3. Капустина М. В., Зимин А. В. Изменчивость характеристик апвеллинга в юго-восточной части Балтийского моря в первые два десятилетия XXI века // Морской гидрофизический журнал. 2023. № 39(6(234)). C. 797—813.
  4. Круглова Е. Е., Семилетова Д. Д., Борисов М. А., Данченков А. Р., Стонт Ж. И., Кречик В. А. Волнение и колебание уровня моря в январе 2022 г. у северного побережья Калининградской области // Морские исследования и образование (MARESEDU) — 2022. 2022. C. 162—166.
  5. Bannister A., Raymond S., Baker R. Surveying. Harlow. 1998.
  6. Blott S. J., Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments // Earth surface processes and Landforms. 2001. No. 26(11). P. 1237—1248. doi: 10.1002/esp.261
  7. Danchenkov A. R., Belov N. S. Morphological changes in the beach-foredune system caused by a series of storms. Terrestrial laser scanning evaluation // Russian Journal of Earth Sciences. 2019. No. 19(4.). 4 p. DOI: 10.2205/ 2019ES000665
  8. Danchenkov A. R., Belov N. S. Comparative Analysis of the Unmanned Aerial Vehicles and Terrestrial Laser Scanning Application for Coastal Zone Monitoring // Russian Journal of Earth Sciences. 2023. No. 23(4), 4008 p. DOI: 10.2205/ 2023es000854
  9. Delgado-Fernandez I. A review of the application of the fetch effect to modelling sand supply to coastal foredunes // Aeolian Research. 2010. No. 2(2—3). P. 61—70. doi: 10.1016/j.aeolia.2010.04.001
  10. Dong Z., Gao S., Fryrear D. W. Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation // Journal of Arid Environments. 2001. No. 49(3). P. 485—505. doi: 10.1006/jare.2001.0807
  11. Du Pont S. C., Rubin D. M., Narteau C., Lapôtre M. G., Day M., Claudin P., ... & Wiggs G. F. Complementary classifications of aeolian dunes based on morphology, dynamics, and fluid mechanics // Earth-Science Reviews. 2024. No. 255, 104772 p. doi: 10.1016/j.earscirev.2024.104772
  12. Duarte-Campos L., Wijnberg K. M., Hulscher S. J. Estimating annual onshore aeolian sand supply from the intertidal beach using an aggregated-scale transport formula // Journal of Marine Science and Engineering. 2018. No. 6(4). 127 p. doi: 10.3390/jmse6040127
  13. Flor G. S., Martínez P. Saucer blowouts in the coast dune fields of NW Spain, Iberian Peninsula. 2023. doi: 10.21203/rs.3.rs-3412700/v1
  14. Folk R. L., Ward W. C. Brazos River bar [Texas]; a study in the significance of grain size parameters // Journal of sedimentary research. 1957. No. 27(1). P. 3—26. DOI: 10.1306/ 74D70646-2B21-11D7-8648000102C1865D
  15. Goodin W. R., McRa G. J., Seinfeld J. H. A comparison of interpolation methods for sparse data: Application to wind and concentration fields // Journal of Applied Meteorology and Climatology. 1979. No. 18(6). P. 761—771. doi: 10.1175/1520-0450(1979)018< 0761:ACOIMF>2.0.CO;2
  16. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., MuñozSabater J., ... & Thépaut J. N. The ERA5 global reanalysis // Quarterly journal of the royal meteorological society. 2020. No. 146(730). P. 1999—2049. doi: 10.1002/qj.3803
  17. Kawamura R. Study on sand movement by wind // Report. 1951. № 5(3), pp. 95—112.
  18. Laporte-Fauret Q., Castelle B., Marieu V., Nicolae-Lerma A., Rosebery D. Foredune blowout formation and subsequent evolution along a chronically eroding high-energy coast // Geomorphology. 2022. No. 414. 108398 p. doi: 10.1016/j.geomorph.2022.108398
  19. Manwell J. F., McGowan J. G., Rogers A. L. Wind energy explained: theory, design and application. John Wiley & Sons. 2010.
  20. Martin R. L., Kok J. F. Distinct thresholds for the initiation and cessation of aeolian saltation from field measurements // Journal of Geophysical Research: Earth Surface. 2018. No. 123(7). P. 1546—1565. doi: 10.1029/2017JF004416
  21. Sherman D. J. An equilibrium relationship for shear velocity and apparent roughness lenght in aeolian saltation // Geomorphology. 1992. No. 5(3—5). P. 419—431. doi: 10.1016/0169-555X(92)90016-H
  22. Sibson R. A brief description of natural neighbour interpolation // Interpreting multivariate data. 1981. P. 21—36.
  23. Stont Z. I., Bobykina V. P., Ulyanova M. O. «Diving» cyclones and consequences of their impact on the coasts of the south-eastern Baltic Sea // Russian Journal of Earth Sciences. 2023a. No. 23(2). 2001 p. DOI: 10.2205/ 2023ES000827
  24. Stont Z. I., Esiukova E. E., Ulyanova M. O. Clusters of cyclones and their effect on coast abrasion in Kaliningrad region // Russian Journal of Earth Sciences. 2023b. No. 23(3). P. 1—13. doi: 10.2205/2023ES000826
  25. Tsoar H. Bagnold, RA 1941: The physics of blown sand and desert dunes. London: Methuen // Progress in physical geography. 1994. No. 18(1). P. 91—96. DOI: 10.1177/ 030913339401800105
  26. Zhou Y., Hasi E., Wang Z., Qing D., Han X., Yin J., Wu Z. Dynamics of blowouts indicating the process of grassland desertification // Land Degradation & Development. 2022. No. 33(15). P. 2885—2897. doi: 10.1002/ldr.4362

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Danchenkov A.R., Piterniex E.D., Belov N.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).