Impurity composition of beryl from spodumene pegmatites of Pashki deposit (Nuristan province, Afghanistan)

Capa

Citar

Texto integral

Resumo

The SIMS method (secondary ions mass-spectrometry) determined the impurity composition of a beryl crystals (aquamarine) from the pegmatites of the Pashki lithium deposit (Nuristan province, Afghanistan). 12 local determinations of the content of 20 chemical elements (including halogens and water) were performed. In comparison with aquamarine from rare metals, including spodumene pegmatites from other regions of the world, the studied beryl is significantly enriched with large ion lithophile elements: Li (about 1100 ppm), Na (4500 ppm) and K (300 ppm). High concentrations of alkaline elements in the beryl of lithium pegmatites are considered as a genetic sign of the high potential of alkalis created during the crystallization of spodumene associated with beryl and other lithium minerals. This well-known genetically determined feature of beryl, characteristic of productive lithium pegmatites, therefore is promising in the development of search and evaluation criteria for lithium pegmatites of Nuristan and other pegmatite provinces.

Sobre autores

S. Skublov

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences; Saint Petersburg Mining University

Autor responsável pela correspondência
Email: skublov@yandex.ru
Rússia, Saint Petersburg; Saint Petersburg

N. Hamdard

Saint Petersburg Mining University

Email: nazifullahhamdard@gmail.com
Rússia, Saint Petersburg

M. Ivanov

Saint Petersburg Mining University

Email: ivanov_ma@pers.spmi.ru
Rússia, Saint Petersburg

A. Gavrilchik

Saint Petersburg Mining University

Email: nazifullahhamdard@gmail.com
Rússia, Saint Petersburg

V. Stativko

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences; Saint Petersburg Mining University

Email: skublov@yandex.ru
Rússia, Saint Petersburg; Saint Petersburg

Bibliografia

  1. Скублов С. Г., Гаврильчик А. К., Березин А. В. Геохимия разновидностей берилла: сравнительный анализ и визуализация аналитических данных методами главных компонент (PCA) и стохастического вложения соседей с t-распределением (t-SNE) // Записки Горного института. 2022. Т. 255. С. 455—469. doi: 10.31897/PMI.2022.40 Skublov S. G., Gavrilchik A. K., Berezin A. V. Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). Journal of Mining Institute, 2022, V. 255, pp. 455—469.
  2. Benham A. J., Coats S. Minerals in Afghanistan: rare-metal deposits. Afghanistan Geological Survey website. 2007. (https://nora.nerc.ac.uk/id/eprint/10924)
  3. Bhandari S., Qin K., Zhou Q., Evans N. J., Gyawali B. R., He C., Sun Z. Magmatic-hydrothermal evolution of the aquamarine-bearing Yamrang Pegmatite, Eastern Nepal: Insights from beryl, garnet, and tourmaline mineral chemistry. Ore Geol. Rev., 2023, V. 162, 105713. doi: 10.1016/j.oregeorev.2023.105713
  4. Bocchio R., Adamo, I., Caucia F. Aquamarine from the Masino-Bregaglia Massif, Central Alps, Italy // Gems & Gemology. 2009. Vol. 45. No. 3. P. 204—207.
  5. Cui S., Xu B., Shen J., Miao Z., Wang Z. Gemology, spectroscopy, and mineralogy study of aquamarines of three different origins // Crystals. 2023. Vol. 13. 1478. doi: 10.3390/cryst13101478
  6. Jiang Y., Li J., Li P., Cai Y., Zhang L. Geochemical and spectroscopic features of beryl (aquamarine) from Renli No. 5 pegmatite in Hunan, Central China // Minerals. 2023. Vol. 13. 336. doi: 10.3390/min13030336
  7. Lum J.E., Viljoen F., Cairncross B., Frei D. Mineralogical and geochemical characteristics of BERYL (AQUAMARINE) from the Erongo Volcanic Complex, Namibia // J. African Earth Sci. 2016. Vol. 124. P. 104—125. doi: 10.1016/j.jafrearsci.2016.09.006
  8. Morozova L. N., Skublov S. G., Zozulya D. R., Serov P. A., Borisenko E. S., Solovjova A. N., Gavrilchik A. K. Li-Cs-Na-Rich beryl from beryl-bearing pegmatite dike No. 7 of the Shongui deposit, Kola Province, Russia // Geosciences. 2023. Vol. 13. 309. doi: 10.3390/geosciences13100309
  9. Pauly C., Gysi A. P., Pfaff K., Merkel I. Beryl as indicator of metasomatic processes in the California Blue Mine topaz-beryl pegmatite and associated miarolitic pockets. Lithos, 2021. 404, 106485. doi: 10.1016/j.lithos.2021.106485
  10. Rossovskiy L. N., Chmyrev V. M. Distribution patterns of rare-metal pegmatites in the Hindu Kush (Afghanistan) // Int. Geol. Rev. 1977. Vol. 19. Iss. 5. P. 511—520. doi: 10.1080/00206817709471047

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Images of the pegmatite vein of the Pashki deposit and aquamarine crystals in pegmatite (marker length is approximately 15 cm). Mineral designations: Brl — beryl (aquamarine), Tur — tourmaline (sherl), Qz — quartz. The inset shows the position of the deposit

Baixar (164KB)
3. Fig. 2. Ratio of content of trace elements (ppm) in aquamarine from the Pashki deposit: a — Li-Cs; b — Na-K; c — Ca-Ti; d — Fe-Mg. The composition of aquamarine is shown from: 1 — Pashki deposit; 2—7 — trace metal pegmatites of the world: 2 — Mozambique and Madagascar; 3 — Yamrang pegmatites (Eastern Nepal) (Bhandari et al., 2023); 4 — California Blue Mine deposits (USA) (Pauly et al., 2021); 5 — pegmatites of the Central Alps (Italy) (Bocchio et al., 2009); 6 — pegmatites of Coctogai (China), Minas Gerais (Brazil) and Noumas (South Africa) by (Cui et al., 2023); 7 — pegmatites of Hunyan district (China) (Jiang et al., 2023)

Baixar (96KB)

Declaração de direitos autorais © Скублов С.G., Хамдард Н., Иванов М.A., Гаврильчик А.K., Стативко В.S., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).