ОБ УСТОЙЧИВОСТИ ОДНОЙ МОДЕЛИ ДИНАМИКИ ПОПУЛЯЦИЙ С ЗАПАЗДЫВАНИЕМ

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается модель динамики изолированной популяции, особи которой проходят три стадии развития. Для описания модели используется нелинейное автономное дифференциальное уравнение c сосредоточенным и распределенным запаздыванием. Получены эффективные достаточные признаки асимптотической устойчивости нетривиального положения равновесия.

Полный текст

Настоящая работа посвящена изучению модели динамики популяций, проходящей в своем развитии три возрастных стадии. Первые варианты такой модели, использующие аппарат уравнений с последействием, были предложены в работе [1]; там же были приведены примеры решений, построенных численными методами.
×

Об авторах

Вера Владимировна Малыгина

ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»

Email: mavera@list.ru
кандидат физико-математических наук, ведущий научный сотрудник НИЦ «Функционально-дифференциальные уравнения» 614990, Российская Федерация, г. Пермь, Комсомольский пр., 29

Список литературы

  1. Тарасов И.А., Перцев Н.В. Анализ решений интегро-дифференциального уравнения, возникающего в динамике популяций // Вестник Омского университета. 2003. № 2. С. 13-15.
  2. Перцев Н.В. Об устойчивости нулевого решения одной системы интегро-дифференциальных уравнений, возникающей в моделях динамики популяций // Известия высших учебных заведений. Математика. 1999. № 8. С. 47-53.
  3. Малыгина В.В., Мулюков М.В., Перцев Н.В. О локальной устойчивости одной модели динамики популяций с последействием // Сибирские электронные математические известия. 2014. Т. 11. С. 951-957.
  4. Малыгина В.В., Мулюков М.В. О локальной устойчивости одной модели динамики популяции с тремя стадиями развития // Известия высших учебных заведений. Математика. 2017. № 4. С. 35-42.
  5. Сабатулина Т.Л., Малыгина В.В. Об устойчивости линейного дифференциального уравнения с ограниченным последействием // Известия высших учебных заведений. Математика. 2014. № 4. С. 25-63.
  6. Азбелев Н.В., Максимов В.П., Рахматуллина Л.Ф. Введение в теорию функционально-дифференциальных уравнений. М.: Наука, 1991. 280 с.
  7. Азбелев Н.В., Малыгина В.В. Об устойчивости тривиального решения нелинейных уравнений с последействием // Известия высших учебных заведений. Математика. 1994. № 6. С. 20-27.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).