О ПРИМЕНЕНИИ W-МЕТОДА Н.В. АЗБЕЛЕВА К СИСТЕМЕ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ЗАДАННЫХ НА ГЕОМЕТРИЧЕСКОМ ГРАФЕ
- Авторы: Плаксина В.П.1
-
Учреждения:
- ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
- Выпуск: Том 23, № 123 (2018)
- Страницы: 531-538
- Раздел: Статьи
- URL: https://journals.rcsi.science/2686-9667/article/view/297261
- DOI: https://doi.org/10.20310/1810-0198-2018-23-123-531-538
- ID: 297261
Цитировать
Полный текст
Аннотация
Рассматривается краевая задача для системы функционально-дифференциальных уравнений, заданных на геометрическом графе. Краевые условия задачи определяются условиями связи ребер графа. Приводится алгоритм, согласно которому система уравнений на графе сводится к системе, заданной на множестве Θ непересекающихся отрезков действительной прямой. К системе, определенной на множестве Θ ; применяется W -метод Н.В.Азбелева, позволяющий получить эффективные условия однозначной разрешимости исходной системы. Приведен пример.
Полный текст
Одной из классических задач механики является нахождение деформации струны (системы связанных струн) под действием внешней нагрузки.×
Об авторах
Вера Павловна Плаксина
ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
Email: vpplaksina@list.ru
кандидат физико-математических наук, доцент кафедры высшей математики 614990, Российская Федерация, г. Пермь, Комсомольский пр., 29
Список литературы
- Покорный Ю.В., Пенкин О.М., Прядиев В.Л., Боровских А.В., Лазарев К.П., Шабров С.А. Дифференциальные уравнения на геометрических графах. М.: Физматлит, 2005. 272 с.
- Покорный Ю.В., Бахтина Ж.И., Зверева М.Б., Шабров С.А. Осцилляционный метод Штурма в спектральных задачах. М.: Физматлит, 2009. 192 с.
- Азбелев Н.В., Максимов В.П., Рахматуллина Л.Ф. Введение в теорию функционально-дифференциальных уравнений. М.: Наука, 1991. 280 с.
- Азбелев Н.В., Максимов В.П., Рахматуллина Л.Ф. Элементы современной теории функционально-дифференциальных уравнений. Методы и приложения. М.: Институт компьютерных исследований, 2002. 384 с.
- Плаксина В.П., Провоторова Е.Н. Об одном классе краевых задач для импульсных систем // Дифференциальные уравнения. 1988. Т. 24. № 8. С. 881-885.
- Плаксина В.П., Плаксина И.М., Плехова Э.В. Условия разрешимости задачи Коши для квазилинейного сингулярного дифференциального уравнения второго порядка // Вестник Тамбовского университета. Серия: Естественные и технические науки. Тамбов, 2015. Т. 20. Вып. 5. С. 1364-1369.
- Плаксина И.М. О применимости W-метода к сингулярному функционально-дифференциальному уравнению второго порядка // Теория управления и математическое моделирование: тез. докл. Всерос. конф. с междунар. участием, посвящ. памяти профессора Н.В. Азбелева и профессора Е.Л. Тонкова. Ижевск, 2015. С. 115-117.
- Плаксина И.М. Об одной модельной сингулярной задаче // Вестник Пермского университета. Серия: Математика. Механика. Информатика. 2010. № 1. С. 19-23.
Дополнительные файлы


