ONE EXAMPLE OF A VECTOR-VALUED METRIC IN THE SPACE OF NONEMPTY CLOSED SUBSETS OF A METRIC SPACE

Cover Page

Cite item

Full Text

Abstract

In the space of nonempty closed subsets of a given metric space, we define a vector-valued metric which differs from the known vector generalizations of the Hausdorff metric. The metric proposed appears in the analysis of multi-valued maps with possibly unbounded images. It allows to get more information about distances between elements of the corresponding sets and turns out to be convenient in fixed point theorems for multi-valued maps.

About the authors

Evgeny Semenovich Zhukovskiy

Tambov State University named after G.R. Derzhavin; Peoples’ Friendship University of Russia

Email: zukovskys@mail.ru
Doctor of Physics and Mathematics, Professor, Director of the Research Institute for Mathematics, Physics and Informatics; Doctor of Physics and Mathematics, Professor of the Department of Nonlinear Analysis and Optimization Tambov, the Russian Federation; Moscow, the Russian Federation

Elena Aleksandrovna Panasenko

Tambov State University named after G.R. Derzhavina

Email: panlena_t@mail.ru
Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department Tambov, the Russian Federation

References

  1. Kurepa D.R. Tableaux ramies d’ensembles. Espaces pseudo distancies // C. R. Acad. Sci. Paris, 1934. V. 198. P. 1563-1565.
  2. Proinov P.D. A unified theory of cone metric spaces and its applications to the fixed point theory // Fixed Point Theory and Applications. 2013. Iss. 103. 51 p. doi: 10.1186/1687-1812-2013-103.
  3. Asadi M., Soleimani H., Vaezpour S.M. An Order on Subsets of Cone Metric Spaces and Fixed Points of Set-Valued Contractions // Fixed Point Theory and Applications. 2009. 8 p. doi: 10.1155/2009/723203.
  4. Zhukovskiy E.S., Panasenko E.A. On multi-valued maps with images in the space of closed subsets of a metric space // Fixed Point Theory and Applications. 2013. Iss. 10. doi: 10.1186/1687-1812-2013-10.
  5. Castaing C., Valadier M. Convex Analysis and Measurable Multifunctions. Berlin-Heidelberg-New York: Springer-Verlag, 1977. 278 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).