Integral representation of the solution of the initial value problem for the wave equation on a geometric graph without boundary vertices

Cover Page

Cite item

Abstract

We study the initial value problem $u(x,0)=\varphi(x),$   $u_t(x,0)=0$ for the wave equation $u_{xx}(x,t)=u_{tt}(x,t)$ for $x\in\Gamma\setminus J$ and $t>0,$   where $\Gamma$ is a geometric graph (according to Yu. V. Pokornyi) with straight-line edges and without boundary vertices ($\partial\Gamma=\varnothing$), $J$ is the set of all internal vertices of $\Gamma,$   and the function $\varphi$ is given; the transmission conditions that close the problem are, in addition to the continuity of the function $u(\,\cdot\,,t)$ at the interior vertices, the smoothness conditions for it, the essence of which is that for each $t\geqslant0$ at each interior vertex $a\in J$ the sum of the right derivatives of the function $u(\,\cdot\,,t)$ in all admissible directions is 0. It is proved that if $G^\ast$ is a generalized Green's function (according to M. G. Zavgorodniy, 2019) for the boundary value problem $-y''(x)=f(x),$   $x\in\Gamma\setminus J,$   under smooth transmission conditions (here $y$ is the desired function, continuous at the points of $J,$   and $f$ is a given function, uniformly continuous on each edge of $\Gamma$), then the classical solution $u$ of the initial value problem is representable in form:
<br/>u(x,t)=φ-Γg*(x,t,s)φ''(s)ds,<br/>
u(x,t)=\langle\varphi\rangle-\int\limits_\Gamma g^\ast(x,t,s)\varphi''(s)\,ds,

where $\langle\varphi\rangle$ is the average of $\varphi$ over $\Gamma,$   and $g^\ast(x,t,s)=[\mathcal C(t)G^\ast(\,\cdot\,,s)](x),$   where, in turn, $\mathcal C$ is an operator function finitely described only through the metric and topological characteristics of $\Gamma.$    The approach to obtaining this representation of $u$ is similar to the approach implemented by the author earlier (2006) in the case where $\partial\Gamma\ne\varnothing$ and Dirichlet conditions are imposed at the points of $\partial\Gamma.$

About the authors

Vladimir L. Pryadiev

Voronezh State University

Author for correspondence.
Email: pryad@mail.ru
ORCID iD: 0009-0005-8301-5674

Candidate of Physics and Mathematics, Associate Professor of the Functions Theory and Geometry Department

Russian Federation, 1 Universitetskaya Sq., Voronezh 394018, Russian Federation

References

  1. V.L. Pryadiev, “Description of solutions to the initialboundary-value problem for a wave equation on a one-dimensional spatial network in terms of the Green function of the corresponding boundary-value problem for an ordinary differential equation”, J. of Math. Sci., 147:1 (2007), 6470–6482.
  2. Yu.V. Pokornyĭ, I. G. Karelina, “On the Green function of the Dirichlet problem on a graph”, Soviet Mathematics Doklady, 43:3 (1991), 732–734.
  3. Yu.V. Pokornyi, O.M. Penkin, V.L. Pryadiev, A.V. Borovskikh, K.P. Lazarev, S.A. Shabrov, Differential Equations on Geometrical Graphs, FIZMATLIT Publ., Moscow, 2004 (In Russian).
  4. R. Courant, D. Hilbert, Methoden der Mathematischen Physik. V. I, Julius Springer, Berlin, 1930.
  5. V.L. Pryadiev, “One approach to the finite-form description of solutions of the wave equation on a spatial network”, Spectral and Evolution Problems, Proceeding of the Fifteenth Crimean Autumn Math. School – Symposium (Sevastopol, September 17–29), 15, Sevastopol–Laspi, 2005, 132–139 (In Russian).
  6. N.V. Glotov, V.L. Pryadiev, “Opisanie resheniy volnovogo uravneniya na konechnom i ogranichennom geometricheskom grafe pri usloviyakh transmissii tipa “zhidkogo” treniya”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2006, №2, 185–193 (In Russian).
  7. Yu.V. Pokornyi, V.L. Pryadiev, A.V. Borovskikh, “The wave equation on a spatial network”, Doklady Mathematics, 67:1 (2003), 10–12.
  8. I.G. Karelina, Some Differential Inequalities on Graphs, Diss. ... Cand. Sci. (Phys. and Mathematics), Voronezh State University, Voronezh, 1992 (In Russian).
  9. V.L. Pryadiev, L.G. Fadeeva, “Representation of the Solution of theWave Equation on an Unbounded Geometric Graph Without Boundary Vertices”, Collection of Scientific Papers: Improving the Teaching of Physics, Mathematics, and General Technical Disciplines in Pedagogical Universities and Schools, 4, Borisoglebsk State Pedagogical Institute, Borisoglebsk, 2007, 39–53 (In Russian).
  10. O.V. Korovina, On Some Properties of Solutions to the Wave Equation on a Geometric Graph, Diss. ... Cand. Sci. (Phys. and Mathematics), Belgorod State University, Belgorod, 2009 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).