Recurrence theorems for dynamical systems in a sequentially compact topological space with invariant Lebesgue measure

Cover Page

Cite item

Abstract

A property is presented that characterizes quite fully the interrelation of motions of a dynamical system $g^t$ defined in a Hausdorff sequentially compact topological space $\Gamma.$ It is noted that in the space $\Gamma$ with an invariant (with respect to $g^t$) Lebesgue measure $\mu,$ a direct analogue of the Poincare--Caratheodory recurrence theorem for sets is valid. In addition, it is shown that if $\bar{\mathcal{M}}$ is the closure of the union $\mathcal{M}$ of all minimal sets of the space $\Gamma,$ then $\mu\bar{\mathcal{M}}=\mu\Gamma,$ and through each point $p\notin\mathcal{M}$ there passes a motion $f(t,p)$ that is both positively and negatively asymptotic with respect to the compact minimal sets $\Omega_p\subset\mathcal{M}$ and $\mathrm{A}_p\subset\mathcal{M}.$ If $\Gamma$ satisfies the second axiom of countability, then $\mu\mathcal{M}=\mu\Gamma,$ i.~e. in $\Gamma,$ there is an important addition to the Poincare-Caratheodory theorem on the points recurrence.

About the authors

Sergei M. Dzyuba

Tver State Technical University

Author for correspondence.
Email: sdzyuba@mail.ru
ORCID iD: 0000-0002-2981-8549

Doctor of Physics and Mathematics, Professor of the Information Systems Department

Russian Federation, 22 Afanasiya Nikitina nab., Tver 170026, Russian Federation

References

  1. V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian).
  2. G.D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian).
  3. D.N. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations, HPC Publ., New York, 2009.
  4. A.P. Afanas’ev, S.M. Dzyuba, “The interrelation of motions of dynamical systems in a metric space”, Lobachevskii J. Math., 43:12 (2022), 3414–3419.
  5. S.M. Dzyuba, “On the interrelation of motions of dynamical systems on compact manifolds”, Lobachevskii J. Math., 44:7 (2023), 2630–2637.
  6. S.M. Dzyuba, “On the recurrent motions of dynamical systems in a semi-metric space”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:144 (2023), 371–382 (In Russian).
  7. S.M. Dzyuba, “About recurrent motions of periodic processes in a sequentially compact topological space”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 29:146 (2024), 138–148 (In Russian).
  8. L.S. Pontryagin, Topological Groups, URSS Publ., Moscow, 2009 (In Russian).
  9. L. Schwartz, Analisys. V. II, Mir Publ., Moscow, 1972 (In Russian).
  10. L. Schwartz, Analisys. V. I, Mir Publ., Moscow, 1972 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).