On the control problem for a pseudo-parabolic equation with involution in a bounded domain

Cover Page

Cite item

Abstract

This paper considers a control problem for a pseudo-parabolic equation with an involution operator in a bounded domain. A generalized solution to the corresponding initial boundary value problem is obtained. By introducing an additional integral condition, the control problem is reduced to a Volterra integral equation of the first kind. To show that the integral equation has a solution, some estimates are obtained for the kernel of this integral equation. The existence of a solution to the integral equation is shown using the Laplace transform method and the admissibility of the control function is proved.

Keywords: pseudo-parabolic equation, Volterra integral equation, admissible control, initial boundary value problem, Laplace transform, weight function

About the authors

Farrukh N. Dekhkonov

Namangan State University

Author for correspondence.
Email: f.n.dehqonov@mail.ru
ORCID iD: 0000-0003-4747-8557

Candidate of Physics and Mathematics, Associate Professor of the Mathematical Analysis Department

Uzbekistan, 316 Uychi St., Namangan 1600136, Uzbekistan

Batirkhan Kh. Turmetov

Khoja Akhmet Yassawi International Kazakh-Turkish University; Alfraganus University

Email: batirkhan.turmetov@ayu.edu.kz
ORCID iD: 0000-0001-7735-6484

Doctor of Physics and Mathematics, Professor, Department of Mathematics; Professor, Department of Mathematics and Physics

Uzbekistan, 29 Bekzat Sattarhanov St., Turkistan 161200, Kazakhstan; 2a Yukori Karakamish Str., Tashkent 100190, Uzbekistan

References

  1. B.D. Coleman, W. Noll, “An approximation theorem for functionals, with applications in continuum mechanics”, Arch. Rational Mech. Anal., 6 (1960), 355–370.
  2. P. Chen, M. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627.
  3. L.W. White, “Controllability properties of pseudo-parabolic boundary control problems”, SIAM J. Control and Optimization, 18 (1980), 534–539.
  4. B.D. Coleman, R.J. Duffin, V.J. Mizel, “Instability, uniqueness, and nonexistence theorems for the equation on a strip”, Arch. Rational Mech. Anal., 19 (1965), 100–116.
  5. L.W. White, “Point control of pseudoparabolic problems”, Journal of Differential Equations, 42:3 (1981), 366–374.
  6. A. Friedman, “Optimal control for parabolic equations”, J. Math. Anal. Appl., 18:3 (1967), 479–491.
  7. H.O. Fattorini, D.L. Russell, “Exact controllability theorems for linear parabolic equations in one space dimension”, Arch. Rational Mech. Anal., 43 (1971), 272–292.
  8. Yu.V. Egorov, “The optimal control in Banach space”, Uspekhi Mat. Nauk., 18 (1963), 211–213.
  9. A.V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications: Translations of Mathematical Monographs, 187, Amer. Math. Soc., Providence, Rhode Island, 2000, 305 pp.
  10. J.L. Lions, Contrґole optimal de syst`emes gouvernґes par des ґequations aux dґerivґees partielles, Dunod Gauthier–Villars, Paris, 1968.
  11. G. Schmidt, “The “Bang–Bang” principle for the time-optimal problem in boundary control of the heat equation”, SIAM Journal on Control and Optimization, 18 (1980), 101–107.
  12. S. Albeverio, Sh.A. Alimov, “On one time-optimal control problem associated with the heat exchange process”, Appl. Math. Opt., 57 (2008), 58–68.
  13. Z.K. Fayazova, “Boundary control of the heat transfer process in the space”, Russian Mathematics, 12 (2019), 82–90.
  14. F.N. Dekhkonov, “On the time-optimal control problem for a heat equation”, Bulletin of the Karaganda University Mathematics Series, 111 (2023), 28–38.
  15. B. Allal, G. Fragnelli, J. Salhi, “Null controllability for degenerate parabolic equations with a nonlocal space term”, Discrete and Continuous Dynamical Systems - S, 17 (2024), 1821–1856.
  16. F. Dekhkonov, “On one boundary control problem for a pseudo-parabolic equation in a twodimensional domain”, Communications in Analysis and Mechanics, 17 (2025), 1–14.
  17. F.N. Dekhkonov, “On the control problem associated with a pseudo-parabolic type equation in an one-dimensional domain”, International Journal of Applied Mathematics, 37:1 (2024), 109–118.
  18. B.K. Turmetov, B.J. Kadirkulov, “An inverse problem for a parabolic equation with involution”, Lobachevskii J. of Math., 42 (2021), 3006–3015.
  19. B.K. Turmetov, B.J. Kadirkulov, “On the solvability of an initial-boundary value problem for a fractional heat equation with involution”, Lobachevskii J. Math., 43 (2022), 249–262.
  20. E. Mussirepova, A. Sarsenbi, A. Sarsenbi, “The inverse problem for the heat equation with reflection of the argument and with a complex coefficient”, Bound Value Probl., 1 (2022), 99.
  21. B. Ahmad, A. Alsaedi, M. Kirane, R. Tapdigoglu, “An inverse problem for space and time fractional evolution equations with an involution perturbation”, Quaest. Math., 40 (2017), 151–160.
  22. A. Kopzhassarova, A. Sarsenbi, “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstr. Appl. Anal., 2012, 576843.
  23. M. Kirane, A.A. Sarsenbi, “Solvability of mixed problems for a fourth-order equation with involution and fractional derivative”, Fractal Fract., 7 (2023), 131.
  24. B. Turmetov, V. Karachik, “On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution”, AIMS Mathematics, 9 (2024), 6832–6849.
  25. M. Muratbekova, B. Kadirkulov, M. Koshanova, B. Turmetov, “On solvability of some inverse problems for a fractional parabolic equation with a nonlocal biharmonic operator”, Fractal and Fractional, 7:5 (2023), 404.
  26. N. Al-Salti, M. Kirane, B. T. Torebek, “On a class of inverse problems for a heat equation with involution perturbation”, Hacet. J. Math. Stat., 48 (2019), 669–681.
  27. F.N. Dekhkonov, “On the control problem for a heat conduction equation with involution in a two-dimensional domain”, Lobachevskii J. Math., 46:2 (2025), 613–623.
  28. F.N. Dekhkonov, “Boundary control problem for a parabolic equation with involution”, Eurasian Journal of Mathematical and Computer Applications, 12 (2024), 22–34.
  29. S.G. Mikhlin, Linear Partial Differential Equations, Vysshaya Shkola Publ., Moscow, 1977.
  30. B. Turmetov, V. Karachik, “On eigenfunctions and eigenvalues of a nonlocal Laplace operator with involution in a parallelepiped”, AIP Conf. Proc., Sixth International Conference of Mathematical Sciences (ICMS 2022) (Istanbul, Turkey, 20–24 July 2022), 2879, 2023.
  31. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and Quasi-Linear Equations of Parabolic Type, Nauka Publ., Moscow, 1967.
  32. Sh.A. Alimov, F.N. Dekhkonov, “On a control problem associated with fast heating of a thin rod”, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 2 (2019), 1–14.
  33. F. Dekhkonov, W. Li, “On the boundary control problem associated with a fourth order parabolic equation in a two-dimensional domain”, Discrete and Continuous Dynamical Systems - S, 17 (2024), 2478–2488.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).