Sharp estimate of the third coefficient for bounded non-vanishing holomorphic functions with real coefficients

Cover Page

Cite item

Abstract

Let $\Omega_0^r$ be a class of holomorphic functions $\omega$ in the unit disk $\Delta,$ with real coefficients, and such that $|\omega(z)|<1,$ $\omega(0)=0,$ $z\in\Delta.$ The coefficients problem in the class $\Omega_0^r$ is formulated as follows: find the necessary and sufficient conditions to be imposed on the real numbers $\{\omega\}_1, \{\omega\}_2,\ldots$ in order for the series $\{\omega\}_1 z+\{\omega\}_2 z^2+\ldots$ to be the Taylor series of a function in the class $\Omega_0^r.$

   The class $B^r$ consists of holomorphic functions $f$ in $\Delta$ with real coefficients and such that    $0<|f(z)|\leq 1,$ $z\in\Delta.$ The classes $B_t^r,$ $t\geq 0,$ are defined as the sets of functions $f\in B^r$ such that $f(0)=e^{-t}.$ The problem of obtaining a sharp estimation of $|\{f\}_n|,$ $n\in\mathbb N,$ on the class $B^r$ or $B_t^r$ is commonly referred to as the Krzyz problem (for the class $B^r$ or $B_t^r$). It~is clear that the union of all classes $B_t^r$ exhausts the class $B^r$ up to rotations in the plane of variable $w$ ($w=f(z)$).

 Based on the solution of the coefficients problem for the class $\Omega_0^r,$ the problem of obtaining a sharp estimation of the functional $|\{f\}_3|$ on the classes $B_t^r$ for every $t\geq 0$ is solved by transitioning to the functional over the class $\Omega_0^r,$ after which the problem is reduced to finding the global constrained extremum of a function of two real variables with inequality-type constraints.

The extreme functions are found in two forms: as a convex combination of Schwartz kernels related to the Caratheodory class, and as Blaschke products related to the class
$\Omega_0^r.$

About the authors

Denis L. Stupin

Tver State University

Author for correspondence.
Email: dstupin@mail.ru
ORCID iD: 0000-0002-9183-9543

Candidate of Physics and Mathematics, Associate Professor of the Fundamental Mathematics and Digital Technologies Department

Russian Federation, 33 Zhelyabova St., Tver 170100, Russian Federation

References

  1. J.G. Krzyz, “Coefficient problem for bounded nonvanishing functions”, Ann. Polon. Math., 70 (1968), 314.
  2. N. Samaris, “A proof of Krzyz’s conjecture for the fifth coefficient”, Compl. Var. Theory and Appl., 48 (2003), 753–766.
  3. W. Rogosinski, “On the coefficients of subordinate functions”, Proc. London Math. Soc., 48 (1943), 48–82.
  4. D.L. Stupin, “The coefficient problem for bounded functions and its applications”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:143 (2023), 277–297 (In Russian).
  5. E. Lindelöf, “Mémorie sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques properiétés nouvelles de ces fonctions dans le voisinage d’un point singulier essentiel”, Acta Soc. Sci. Fenn., 35:7 (1909), 1–35.
  6. J.E. Littlewood, Lectures on the Theory of Functions, Oxford university press, 1947.
  7. J.A. Hummel, S. Scheinberg, L.A. Zalcman, “A coefficient problem for bounded nonvanishing functions”, J. d'Analyse Mathematique, 31 (1977), 169–190.
  8. R. Peretz, “Applications of subordination theory to the class of bounded nonvanishing functions”, Compl. Var., 17:3–4 (1992), 213–222.
  9. W. Szapiel, “A new approach to the Krzyz conjecture”, Ann. Univ. M. Curie-Sklodowska. Sec. A., 48 (1994), 169–192.
  10. D.L. Stupin, “The sharp estimates of all initial taylor coefficients in the Krzyz’s problem”, arXiv:abs/1104.3984.
  11. J.E. Brown, “Iterations of functions subordinate to schlicht functions”, Compl. Var., 9 (1987), 143–152.
  12. G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, 26, American Mathematical Society, Rhode Island, 1969, 676 pp.
  13. D.L. Stupin, “A new proof of the Krzyz conjecture for n=3”, Izv. Saratov Univ. Math. Mech. Inform., 24:3 (2024), 342–350 (In Russian).
  14. D.V. Prokhorov, J. Szynal, “Coefficient estimates for bounded nonvanishing functions”, Bull. Acad. Pol. Sci. Ser. Sci. Math., 29:5–6 (1981), 223–230.
  15. V.I. Levin, W. Fenchel, E. Reissner, “Losing der Aufgabe 163”, Jahresber. DM., 44:2 (1934), 80–83.
  16. D.V. Prokhorov, “Coefficients of holomorphic functions”, Journal of Mathematical Sciences, 106:6 (2001), 3518–3544.
  17. D.L. Stupin, “A new method of estimation of moduli of initial Taylor coefficients on the class of bounded non-vanishing functions”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 29:145 (2024), 98–120 (In Russian).
  18. D.L. Stupin, “One method of estimation of moduli of Taylor coefficients of subordinated functions”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2024, №2, 71–84 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).