On some properties of motions of dynamical systems on compact manifolds

Cover Page

Cite item

Abstract

The article considers the motions of dynamical system $g^t$ defined on a topological compact manifold $V.$


It is shown that the set $M_1$ of non-wandering points with respect to $V$ is the set of central motions $\fM$, and  the union of all compact minimal sets is everywhere dense in the set $\fM.$ It is established that for any motion $f(t,p),$ there exists a compact minimal set $\Om\subset V$ with the following property: for all values $t_0\in\R$ and every neighborhood $E_{\Om}$ of the set $\Om,$ the probability that the arc $\{f(t,p)\colon t\in[t_0,t_1]\}$ of the motion trajectory $f(t,p)$ belongs to the set $E_{\Om},$ tends to 1 as $t_1\to+\iy;$ a similar statement is true for the arc $\{f(t,p)\colon t\in[-t_1,t_0]\}.$

All statements of this article can be transferred without any changes to the system $g^t$ defined in a Hausdorff sequentially compact topological space.

About the authors

Sergei M. Dzyuba

Tver State Technical University

Author for correspondence.
Email: sdzyuba@mail.ru
ORCID iD: 0000-0002-2981-8549

Doctor of Physics and Mathematics, Professor of the Information Systems Department

Russian Federation, 22 Afanasiya Nikitina nab., Tver 170026, Russian Federation

References

  1. G.D. Birkhoff, Dynamical systems, Udm. University Publ., Izhevsk, 1999 (In Russian).
  2. V.V. Nemytskii, V.V. Stepanov, Qualitative theory of differential equations, URSS Publ., Moscow, 2004 (In Russian).
  3. D.N. Cheban, Asymptotically almost periodic solutions of differential equations, HPC Publ., New York, 2009.
  4. A.P. Afanas’ev, S.M. Dzyuba, “On the interrelation of motions of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:138 (2022), 136–142 (In Russian).
  5. S.M. Dzyuba, “On the interrelation of motions of dynamical systems on compact manifolds”, Lobachevskii J. Math., 44:7 (2023), 2630–2637.
  6. L. Schwartz, Analisys. V. II, Mir Publ., Moscow, 1972 (In Russian).
  7. E.A. Coddington, N. Levinson, Ordinary differential equations, LKI Publ., Moscow, 2007 (In Russian).
  8. V.V. Nemytskii, V.V. Stepanov, Qualitative theory of differential equations, Princeton University Press Publ., Princeton, 1960.
  9. S.M. Dzyuba, “On the recurrent motions of dynamical systems in a semi-metric space”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports Mathematics, 28:144 (2023), 371–382 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).