About estimates of stability of contraction mappings on the first Heisenberg group in the fixed point theorem
- Authors: Greshnov A.V.1
-
Affiliations:
- Novosibirsk State University (NSU)
- Issue: Vol 30, No 149 (2025)
- Pages: 15-27
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/304170
- ID: 304170
Cite item
Full Text
Abstract
On a symmetric $(1,q_2)$-quasimetric space $(\Bbb H^1_{\alpha},\mathrm{Box}_{\Bbb H^1_{\alpha}}),$ where $\mathrm{Box}_{\Bbb H^1_{\alpha}}$ is the
$\mathrm{Box}$-quasimetic of the first Heisenberg group $\Bbb H^1_{\alpha},$ we studied a constant $\mathrm{L}_{\Phi}$ in the estimate $\mathrm{Box}_{\Bbb H^1_{\alpha}}(u,\xi)\leq\frac{\mathrm{L}_{\Phi}\mathrm{Box}_{\Bbb H^1_{\alpha}}\big(u,\Phi(u)\big)}{1-\varepsilon}$ of stability of the $\varepsilon$-contracting mapping $\Phi$ with respect to the identity mapping; here $\xi$ is a fixed point of the mapping $\Phi$ and $u$ is an arbitrary point of $\Bbb H^1_{\alpha}.$ In the paper, we got that $\mathrm{L}_{\Phi}=1$ when the mapping $\Phi$ is the composition of the left translation and the homogeneous dilation subgroup.
Examples of the contracting mappings $\Phi$ on the first Heisenberg group such that $\mathrm{L}_{\Phi}$ is not less then $C\sqrt{q_2}$ were found; here positive constant $C$ does not depend on the choice of point $u\in\Bbb H^1_{\alpha}.$
About the authors
Alexandr V. Greshnov
Novosibirsk State University (NSU)
Author for correspondence.
Email: a.greshnov@g.nsu.ru
ORCID iD: 0000-0002-1218-2767
Doctor of Physics and Mathematics, Professor of the Department of Mathematical Analysis
Russian Federation, 1 Pirogova St., Novosibirsk 630090, Russian FederationReferences
- A.V. Arutyunov, A.V. Greshnov, “(q_1,q_2) -quasimetric spaces. Covering mappings and coincidence points”, Izvestiya Mathematics, 82:2 (2018), 245–272.
- A.V. Arutyunov, A.V. Greshnov, “The theory of (q_1,q_2) -quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437.
- A.V. Arutyunov, A.V. Greshnov, “(q_1,q_2) -quasimetric spaces. Covering mappings and coincidence points. A review of the results”, Fixed Point Theory, 23:2 (2022), 473–486.
- W.A. Wilson, “On quasi-metric spaces”, American J. of Math., 53 (1931), 675–684.
- A.V. Greshnov, “(q_1,q_2) -quasimetrics bi-Lipschitz equivalent to 1 -quasimetrics”, Siberian Adv. Math., 27:4 (2017), 253–262.
- S.K. Vodopyanov, “Geometry of Carnot-Carathґeodory spaces and differentiability of mappings”, Contemporary Mathematics, 424 (2007), 247–301.
- S.G. Basalaev, S.K. Vodopyanov, “Approximate differentiability of mappings of Carnot-Carathґeodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48.
- A.V. Greshnov, M.V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some (q_1,q_2) -quasimetrics on canonical Carnot groups”, Math. Notes, 98:4 (2015), 694–698.
- A. Nagel, E.M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I. Basic properties”, Acta Mathematica, 155:1–2 (1985), 103–147.
- A.V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Doklady Mathematics, 76:2 (2007), 665–668.
- M.V. Borzova, E.S. Zhukovskiy, N.Yu. Chernikova, “One estimate of fixed points and coincidence points of mappings of metric spaces”, Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1255–1260 (In Russian).
- L.V. Ovsyannikov, Group Analysis of Differential Equations, Nauka Publ., Moscow, 1978 (In Russian).
- M.M. Postnikov, Lectures In Geometry: Semester V – Lie Group And Lie Algebras, Mir Publ., Moscow, 1986.
- A. Agrachev, D. Barilari, U.Boscain, A Comprehensive Introduction to sub-Riemannian Geometry, Cambridge, Cambridge University Press, 2020.
- A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacian, Berlin–Heidelberg, Springer–Verlag, 2007.
Supplementary files
