Two parameter $C_{0}$-semigroups of linear operators on locally convex spaces

Cover Page

Cite item

Abstract

The purpose of this paper is to study two parameter (resp. $n$-parameter) expo\-nen\-tial\-ly equicontinuous $C_{0}$-semigroups of continuous linear operators on sequentially complete locally convex Hausdorff spaces. In particular, we demonstrate the Hille--Yosida theorem for two parameter (resp. $n$-parameter) exponentially equicontinuous $C_{0}$-semigroups of continuous linear operators on sequentially complete locally convex Hausdorff spaces. Moreover, the $n$-parameter $C_{0}$-semigroups of continuous linear operators on Banach spaces are studied.

About the authors

Jawad Ettayb

Regional Academy of Education and Training Casablanca–Settat, Hamman Al–Fatawaki Collegiate High School

Author for correspondence.
Email: jawad.ettayb@gmail.com
ORCID iD: 0000-0002-4819-943X

Doctor of Mathematics, Professor at Hamman Al–Fatawaki Collegiate High School

Morocco, Road to Berrechid, Had Soualem 26402, Morocco

References

  1. N.H. Abdelaziz, "Commutativity and generation of n-parameter semigroups of bounded linear operators", Houston Journal of Mathematics, 9:2 (1983), 151-156.
  2. Sh. Al-Sharif, R. Khalil, "On the generator of two parameter semigroups", Appl. Math. Comput., 156:2 (2004), 403-414.
  3. H.F. Trotter, "On the product of semigroups of operators", Proceedings of the American Mathematical Society, 10:4 (1959), 545-551.
  4. V.A. Babalola, "Semigroups of operators on locally convex spaces", Transactions of the American Mathematical Society, 199 (1974), 163-179.
  5. S. Ouchi, "Semi-groups of operators in locally convex spaces", Journal of the Mathematical Society of Japan, 25:2 (1973), 265-276.
  6. H. Komatsu, "Semi-groups of operators in locally convex spaces", Journal of the Mathematical Society of Japan, 16:3 (1964), 230-262.
  7. T. Komura, "Semigroups of operators in locally convex spaces", Journal of Functional Analysis, 2:3 (1968), 258-296.
  8. L. Naciri, E. Beckenstein, Topological Vector Spaces, 2-nd ed., Taylor & Francis Group, Boca Raton-London-New York, 2011.
  9. T. Granucci, "Integrated Semigroups on Fréchet space I: Bochner integral, Laplace integral and real representation theorem", Journal of Mathematics Research, 11:1 (2019), 118-143.
  10. Y.H. Choe, "C_0-semigroups on a locally convex space", J. Math. Anal. Appl., 106:2 (1985), 293-320.
  11. K. Singbal-Vedak, "Semigroups of operators on a locally convex space", Commentationes Mathematicae, 16:1 (1972), 53-74.
  12. J. Ettayb, "A Hille-Yosida theorem for two parameter equicontinuous C_0-semigroups on locally convex spaces", Novi Sad J. Math. (to appear).
  13. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. V. 44, Applied Mathematical Sciences, Springer-Verlag, New York, 1983.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).