ON THE NUMERICAL METHOD OF CONSTRUCTION OF UNSTABLE SOLUTIONS OF DYNAMICAL SYSTEMS WITH QUADRATIC NONLINEARITIES
- Authors: Pchelintsev A.N.1
-
Affiliations:
- Tambov State Technical University
- Issue: Vol 23, No 123 (2018)
- Pages: 555-565
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/297264
- DOI: https://doi.org/10.20310/1810-0198-2018-23-123-555-565
- ID: 297264
Cite item
Full Text
Abstract
In this paper, the author considers the modification of the method of power series for the numerical construction of unstable solutions of systems of ordinary differential equations of chaotic type with quadratic nonlinearities in general form. A region of convergence of series is found and an algorithm for constructing approximate solutions is proposed.
Keywords
Full Text
Рассмотрим автономную систему дифференциальных уравнений×
About the authors
Alexander Nikolaevich Pchelintsev
Tambov State Technical University
Email: pchelintsev.an@yandex.ru
Candidate of Physics and Mathematics, Associate Professor of the Department of Commerce and Business Informatics 106 Sovetskaya st., Tambov 392000, Russian Federation
References
- Ланда П.С. Нелинейные колебания и волны. М.: Книжный дом «Либроком», 2010. 552 с.
- Llanos-P´erez J.A., Betancourt-Mar J.A., Cochob G., Mansilla R., Nieto-Villar J.M. Phase transitions in tumor growth: III vascular and metastasis behavior // Physica A: Statistical Mechanics and its Applications. 2016. Vol. 462. P. 560-568.
- Lorenz E.N. Deterministic nonperiodic flow // Journal of the Atmospheric Sciences. 1963. Vol. 20. № 2. P. 130-141.
- Yorke J.A., Yorke E.D. Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model // Journal of Statistical Physics. 1979. Vol. 21. № 3. P. 263-277.
- Калошин Д.А. Поиск и стабилизация неустойчивых седловых циклов в системе Лоренца // Дифференциальные уравнения. 2001. T. 37. Вып. 11. С. 1559-1561.
- Бабушка И., Витасек Э., Прагер М. Численные процессы решения дифференциальных уравнений. М.: Мир, 1969. 368 с.
- Teixeira J., Reynolds C.A., Judd K. Time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and ensemble design // Journal of the Atmospheric Sciences. 2007. Vol. 64. № 1. P. 175-189.
- Strogatz S.H. Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry and Engineering. N. Y.: Perseus Books Publ., 1994. 498 p.
- Sarra S.A., Meador C. On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods // Nonlinear Analysis: Modelling and Control. 2011. Vol. 16. № 3. P. 340-352.
- Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М.: Мир, 1990. 512 с.
- Motsa S.S., Dlamini P., Khumalo M. A new multistage spectral relaxation method for solving chaotic initial value systems // Nonlinear Dynamics. 2013. Vol. 72. № 1. P. 265-283.
- Hashim I., Noorani M.S.M., Ahmad R., Bakar S.A., Ismail E.S., Zakaria A.M. Accuracy of the Adomian decomposition method applied to the Lorenz system // Chaos, Solitons and Fractals. 2006. Vol. 28. № 5. P. 1149-1158.
- Abdulaziz O., Noor N.F.M., Hashim I., Noorani M.S.M. Further accuracy tests on Adomian decomposition method for chaotic systems // Chaos, Solitons and Fractals. 2008. Vol. 36. № 5. P. 1405-1411.
- Vadasz P., Olek S. Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz equations // International Journal of Heat and Mass Transfer. 2000. Vol. 43. № 10. P. 1715-1734.
- Пчелинцев А.Н. Численное и физическое моделирование динамики системы Лоренца // Сибирский журнал вычислительной математики. 2014. T. 17. Вып. 2. С. 191-201.
- Lozi R., Pchelintsev A.N. A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case // International Journal of Bifurcation and Chaos. 2015. Vol. 25. № 13. doi: 10.1142/S0218127415501874.
- Jafari S., Sprott J.C., Nazarimehr F. Recent new examples of hidden attractors // The European Physical Journal Special Topics. 2015. Vol. 224. № 8. P. 1469-1476.
- Жуковский Е.С. О параметрическом задании решения дифференциального уравнения и его приближенном построении // Известия высших учебных заведений. Математика. 1996. Вып. 4. С. 31-34.
Supplementary files

