EXISTENCE AND STABILITY OF BUMPS IN A NEURAL FIELD MODEL
- Authors: Kolodina K.1, Oleynik A.2, Wyller J.1
- 
							Affiliations: 
							- Norwegian University of Life Sciences
- University of Bergen
 
- Issue: Vol 23, No 122 (2018)
- Pages: 131-135
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/297215
- DOI: https://doi.org/10.20310/1810-0198-2018-23-122-131-135
- ID: 297215
Cite item
Full Text
Abstract
Full Text
The set of coupled integro-differential equationsAbout the authors
Karina Kolodina
Norwegian University of Life Sciences
														Email: karina.kolodina@nmbu.no
				                					                																			                								PhD-student at Faculty of Science and Technology				                								3 Universitetstunet, As 1433, Norway						
Anna Oleynik
University of Bergen
														Email: Anna.Oleynik@uib.no
				                					                																			                								PhD, Postdoctoral fellow at Department of Mathematics				                								 						
John Wyller
Norwegian University of Life Sciences
														Email: john.wyller@nmbu.no
				                					                																			                								PhD, Professor at Faculty of Science and Technology				                								41 Allegaten, Realfagbygget, Bergen 5020, Norway						
References
- Nguetseng G. A general convergence result for a functional related to the theory of homogenization // SIAM Journal on Mathematical Analysis. 1989. Vol. 20. № 3. P. 608-623.
- Kolodina K., Oleynik A., Wyller J. Single bumps in a 2-population homogenized neuronal network model // Physica D: Nonlinear Phenomena. 2018. Vol. 310. P. 40-53.
Supplementary files
 
				
			 
					 
						 
				 
									
 
  
  
  Email this article
			Email this article 

