EXISTENCE AND STABILITY OF BUMPS IN A NEURAL FIELD MODEL

Cover Page

Cite item

Full Text

Abstract

We investigate existence and stability of bumps (localized stationary solutions) in a homogenized 2-population neural field model, when the firing rate functions are given by the unit step function.

Full Text

The set of coupled integro-differential equations
×

About the authors

Karina Kolodina

Norwegian University of Life Sciences

Email: karina.kolodina@nmbu.no
PhD-student at Faculty of Science and Technology 3 Universitetstunet, As 1433, Norway

Anna Oleynik

University of Bergen

Email: Anna.Oleynik@uib.no
PhD, Postdoctoral fellow at Department of Mathematics

John Wyller

Norwegian University of Life Sciences

Email: john.wyller@nmbu.no
PhD, Professor at Faculty of Science and Technology 41 Allegaten, Realfagbygget, Bergen 5020, Norway

References

  1. Nguetseng G. A general convergence result for a functional related to the theory of homogenization // SIAM Journal on Mathematical Analysis. 1989. Vol. 20. № 3. P. 608-623.
  2. Kolodina K., Oleynik A., Wyller J. Single bumps in a 2-population homogenized neuronal network model // Physica D: Nonlinear Phenomena. 2018. Vol. 310. P. 40-53.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).