On continuous and Lipschitz selections of multivalued mappings given by systems of inequalities

Cover Page

Cite item

Full Text

Abstract

 We consider a multivalued mapping of the following form a(x)={yY|fi(x,y)0, iI},  xX, a(x)=\{ y \in Y \,|\,\, f_i(x,y) \leq 0, \ i\in I\}, \ \ x \in X, where $X \subset \mathbb{R}^m$ is compact; $Y \subset \mathbb{R}^n$ is convex compact; the gradients $f'_{iy}(x,y),$ $i \in I,$ of the functions $f_i(x,y)$ along $y$ satisfy the Lipschitz condition on $Y$; $I$ is a finite set of indices. Using the linearization method, existence theorems for continuous and Lipschitz selectors passing through any point of the graph of the multivalued mapping $a$ are proved. Both local and global theorems are obtained. Examples are given that confirm the significance of the assumptions made, as well as examples illustrating the application of the obtained statements to optimization problems.

About the authors

Rafik A. Khachatryan

Yerevan State University

Author for correspondence.
Email: khrafik@ysu.am
ORCID iD: 0000-0002-7908-0562

Doctor of Physical and Mathematical Sciences, Professor of the Numerical Analysis and Mathematical Modeling Department

Russian Federation, 1 Alex Manukyan St., Yerevan 0025, Armenia

References

  1. R.T. Rockafellar, J.B. Wets, Variation Analysis, Springer, New York, 2009.
  2. E. Michael, “Continous Selection 1”, Ann. Math., 1956, №63, 361–381.
  3. M.V. Balashov, G.E. Ivanov, “Weakly convex and proksimally smooth sets in Banach space”, Izwestiya: Mathematics, 73:3 (2009), 23–66 (in Russian).
  4. G.E. Ivanov, Weakly convex functions and sets: theory and applications, Fizmatlit Publ., Moscow, 2006 (In Russian).
  5. F.H. Clarke, R.J. Stern, P.R. Wolenski, “Proximal smoothness and lowee-C^2 property”, Convex Anal., 2:1 (1085), 231–259.
  6. V.V. Ostapenko, “On one condition of almost convexity”, Ukrainian Math. Journal, 35:2 (1983), 163–172 (in Russian).
  7. R.A. Khachatryan, “On continuous selections of a multivalued mapping with almost convex values”, Izv. NAN Armenia. Mathematics, 54:1 (2019), 60–75 (in Russian).
  8. B.N. Pshenichny, Linearization Method, Nauka Publ., Moscow, 1983 (In Russian).
  9. R.A. Khachatryan, “On derivatives with respect to the direction of selections of multivalued mappings”, Izv. NAN Armenia. Mathematics, 54:3 (2016), 64–82 (in Russian).
  10. B.N. Pshenichny, Convex Analysis and Extremal Problems, Nauka Publ., Moscow, 1980 (In Russian).
  11. Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovsky, Inrodiction to the Theory of Multivalued Mappins and Differential Inclusions, URSS Publ., Moscow, 2005 (In Russian), 216 pp.
  12. Yu.E. Nesterov, Convex optimization methods, ICCMMO Publ., Moscow, 2010 (In Russian).
  13. V.V. Ostapenko, E.V. Ostapenko, S.N. Amigalieva, “Approximate methods for solving differntial gaims with random nois”, System Researsh and information Technologies, 2005, №4, 65–74 (in Russian).
  14. B.Sh. Mordukhovish, Approximation Methods in Optimization and Control Problems, Nauka Publ., Moscow, 1988.
  15. S. Adly, F. Nacry, L. Thibault, “Discontinous sweeping process with prox-regular sets”, ESAIM: Contol, Optimization and Calculus of Variations, 23 (2017), 1293–1329.
  16. R.A. Khachatryan, “On the existence of continuous selections of a multivalued mapping related to the problem of minimizing a functional”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:139 (2022), 284–299 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).