On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation

Cover Page

Cite item

Abstract

Conditions of negativity for the Green's function of a two-point boundary value problem
\[
    \Lc_\lambda u := u^{(n)}-\lambda\int_0^l u(s) d_s r(x,s)=f(x), \ \ \ x\in[0,l], \ \ \ B^k(u)=0,
\]
where $B^k(u)=(u(0),\ldots,u^{(n-k-1)}(0),u(l),-u'(l),\ldots,(-1)^{(k-1)}u^{(k-1)}(0)),$
$n\ge3,$ $0\!<\!k\!<\!n,$ $k$ is odd,  are considered. The function $r(x,s)$ is assumed to be non-decreasing in the second argument.
A necessary and sufficient condition for the nonnegativity of the solution of this boundary value problem on the set $E$ of functions satisfying the conditions
\[
    u(0)=\cdots=u^{(n-k-2)}(0)=0, \ \ \ u(l)=\cdots=u^{(k-2)}(l)=0,
\]
$u^{(n-k-1)}(0)\ge0,$ $u^{(k-1)}(l)\ge0,$ $f(x)\le 0$ is obtained.
This condition lies in the subcriticality of boundary value problems with vector functionals $B^{k-1}$ and $B^{k+1}.$ Let $k$ be even and $\lambda^k$ be the smallest positive value of $\lambda$ for which the problem $\Lc_\lambda u = 0,$ $B^ku = 0$ has a nontrivial solution.
Then the pair of conditions $\lambda <\lambda^{k-1}$ and $\lambda <\lambda^{k+1}$ is necessary and sufficient for positivity of the solution of the problem.

About the authors

Sergey M. Labovskiy

Plekhanov Russian University of Economics

Author for correspondence.
Email: labovski@gmail.com
ORCID iD: 0000-0001-7305-4630

Candidate of Physics and Mathematics, Associate Professor of the Higher Mathematics Department

Russian Federation, 36 Stremyanny lane, Moscow 117997, Russian Federation

References

  1. S. Labovskiy, “On positivity of Green’s functions of a functionaldifferential equation”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1246–1249 (In Russian).
  2. M. Krasnosel’skii, E. Lifshits, A. Sobolev, Positive Linear Systems, the Method of Positive Operators, Heldermann–Verlag, Berlin, 1989, 354 pp.
  3. M. Krein, M. Rutman, “Linear operators leaving invariant a cone in a Banach space”, Uspekhi Mat. Nauk, 3:1(23) (1948), 3–95 (In Russian).
  4. S.M. Labovskii, “Positive solutions of linear functional differential equations”, Differential Equations, 20 (1984), 428–434.
  5. S.M. Labovskii, “Positive solutions of a twopoint boundary value problem for a linear singular functional-differential equation”, Differential Equations, 24:10 (1988), 1116–1123.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).